Cytogenetic study of 18 colorectal carcinomas confirmed the extensive heterogeneity and the complexity of the karyotypic picture in this tumor.Karyotypic analysis showed that chromosomes 7 and 3 were of the highest chromosomal gaining frequencies(72%,66%) and chromosomal losses were shown in chromosome 17(50%),chromosome5(44%) and chromosome 18(33%).The structual rearrangements frequently involved were 17p(78%),5q(61%),6q,7q,8p,12q,2p,etc.A great number of marker chromosomes and polyploid chromosomes had bad prognosis relatively.According to these results,we conclude that chromosomes 17,5,and 18 may play an important role in the evolution of colorectal cancer.
The rotation center of traditional hip disarticulation prosthesis is often placed in the front and lower part of the socket, which is asymmetric with the rotation center of the healthy hip joint, resulting in poor symmetry between the prosthesis movement and the healthy lower limb movement. Besides, most of the prosthesis are passive joints, which need to rely on the amputee’s compensatory hip lifting movement to realize the prosthesis movement, and the same walking movement needs to consume 2–3 times of energy compared with normal people. This paper presents a dynamic hip disarticulation prosthesis (HDPs) based on remote center of mechanism (RCM). Using the double parallelogram design method, taking the minimum size of the mechanism as the objective, the genetic algorithm was used to optimize the size, and the rotation center of the prosthesis was symmetrical with the rotation center of the healthy lower limb. By analyzing the relationship between the torque and angle of hip joint in the process of human walking, the control system mirrored the motion parameters of the lower on the healthy side, and used the parallel drive system to provide assistance for the prosthesis. Based on the established virtual prototype simulation platform of solid works and Adams, the motion simulation of hip disarticulation prosthesis was carried out and the change curve was obtained. Through quantitative comparison with healthy lower limb and traditional prosthesis, the scientificity of the design scheme was analyzed. The results show that the design can achieve the desired effect, and the design scheme is feasible.
Genetic epilepsy with febrile seizures plus (GEFS+) is a new type of genetic epilepsy syndrome with a marked hereditary tendency. Febrile seizure is the most common clinical symptom, followed by febrile seizure plus, and with/without absence seizures, focal seizures, and generalized tonic-clonic seizures. Results of the polymerase chain reaction (PCR), exon sequencing and single nucleotide polymorphism (SNP) analysis showed that the occurrence of GEFS+ is mainly related to the mutation of gamma aminobutyric acid type A receptor gamma 2 subunit (GABRG2), but its pathogenesis was still unclear. The main types of GABRG2 mutations include missense mutation, nonsense mutation, frameshift mutation, point mutation and splice site mutation. All these types of mutations can reduce the function of ion channels on cell membrane, but the degree and mechanism of dysfunction are different, which may be the main mechanism of epilepsy. This article will focus on the relationship between GEFS+ and the mutation types of GABRG2 in recent years, which is of great significance for clinical accurate diagnosis, anti-epileptic treatment strategy and new drug development.
Fetal electrocardiogram signal extraction is of great significance for perinatal fetal monitoring. In order to improve the prediction accuracy of fetal electrocardiogram signal, this paper proposes a fetal electrocardiogram signal extraction method (GA-LSTM) based on genetic algorithm (GA) optimization with long and short term memory (LSTM) network. Firstly, according to the characteristics of the mixed electrocardiogram signal of the maternal abdominal wall, the global search ability of the GA is used to optimize the number of hidden layer neurons, learning rate and training times of the LSTM network, and the optimal combination of parameters is calculated to make the network topology and the mother body match the characteristics of the mixed signals of the abdominal wall. Then, the LSTM network model is constructed using the optimal network parameters obtained by the GA, and the nonlinear transformation of the maternal chest electrocardiogram signals to the abdominal wall is estimated by the GA-LSTM network. Finally, using the non-linear transformation obtained from the maternal chest electrocardiogram signal and the GA-LSTM network model, the maternal electrocardiogram signal contained in the abdominal wall signal is estimated, and the estimated maternal electrocardiogram signal is subtracted from the mixed abdominal wall signal to obtain a pure fetal electrocardiogram signal. This article uses clinical electrocardiogram signals from two databases for experimental analysis. The final results show that compared with the traditional normalized minimum mean square error (NLMS), genetic algorithm-support vector machine method (GA-SVM) and LSTM network methods, the method proposed in this paper can extract a clearer fetal electrocardiogram signal, and its accuracy, sensitivity, accuracy and overall probability have been better improved. Therefore, the method could extract relatively pure fetal electrocardiogram signals, which has certain application value for perinatal fetal health monitoring.
Objective To analyze the correlation between HLA-A and B genotypes and maculopapular exanthema (MPE) caused by Carbamazepine (CBZ) and Oxcarbazepine (OXC), and to explore the genetic risk factors of MPE. Methods Patients with MPE (rash group) and patients without MPE (non-rash group) after taking CBZ or OXC were retrospectively collected from January 2016 to October 2021 in the Second Affiliated Hospital of Guangzhou Medical University. DNA was extracted from peripheral blood. HLA-A and HLA-B alleles were sequenced by high resolution sequencing, and a case-control study was conducted to analysis the correlations between MPE and HLA genotypes. Results A total of 100 patients with CBZ-MPE, 100 patients with CBZ-tolerant, 50 patients with OXC-MPE, and 50 patients with OXC-tolerant were collected. There was no significant difference in age and sex between CBZ, OXC rash groups and non-rash groups The average latency of CBZ-rash group was (11.31±11.00) days and their average dosage was (348.46±174.10) mg; the average latency of OXC-rash group was (11.67±10.34) days and their average dosage was (433.52±209.22) mg [equivalent to CBZ (289.01±139.48 mg)], showing no significant difference in latency and dosage between CBZ and OXC (P>0.05). The positive rates of HLA-A*24:02 and A*30:01 in CBZ-rash group were 28% and 6%, respectively, which were significantly higher than those in CBZ-non rash group (16% and 0%, both P=0.04). The positive rate of HLA-B*40:01 in CBZ-rash group was 18%, which was significantly lower than that in CBZ-non rash group (40%, P<0.001). No association between HLA-A or B genotype and OXC-rash was found yet. When pooled, it was still found that the positive rates of HLA-A*24:02 and A*30:01 in the rash group were higher than those in the non-rash group, while the positive rate of HLA-B*40:01 in the rash group was lower than that in the non-rash group, and the difference was statistically significant (P<0.05). Conclusions HLA-A*24:02 and A*30:01 were associated with MPE caused by CBZ, and may be common risk factors for aromatic antiepileptic drugs.
ObjectiveTo study SCN1A gene mutations and their inheritance in patients with Dravet syndrome (DS), and to analyze the phenotypes of their family members. MethodsGenomic DNA was extracted from peripheral blood samples from DS patients and their parents. SCN1A gene mutations were screened using PCR-DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). Results547 DS patients were collected, SCN1A gene mutations were identified in 379 patients (69.3%), which included 179 missense mutations (47.2%), 78 nonsense mutations (20.6%), 77 frameshift mutations (20.3%), 37 splice site mutations (9.8%), and 8 cases with SCN1A gene fragment deletions or duplications (2.1%). Of 379 DS patients, the parents of 354 DS patients were further analyzed, the de novo mutations accounted for 92.9%, inherited mutations accounted for 7.1%, and in 5 of the latter families, the SCN1A-positive parent carried a somatic mutations mosaicism. For the 25 parents carrying SCN1A mutations, 1 had DS, 11 had febrile seizures plus, 9 had febrile seizures, whilst 4 were normal. ConclusionsThe mutation rate of SCN1A in DS patients is high. Most mutations are of missense and truncation mutations (including nonsense mutation and frameshift mutation). Only a few patients have carried fragment deletions or duplications. Most SCN1A mutations are de novo, only a few are inherited from the parents. SCN1A mutations carried by the parents can be in the form of mosaicism. The phenotypes of parents with SCN1A mutations can be severe, mild or normal, and a mosaic transmitting parent always shows mild or normal.
ObjectiveTo investigate the association of high density lipoprotein cholesterol (HDL-C) and cholesterol ester transfer protein (CETP) TaqIB mutation with non-arteritic anterior ischemic optic neuropathy (NA-AION) in the Shaanxi Han ethnic population. MethodsThe study cohort consisted of 45 individuals that had been diagnosed with NA-AION and 45 healthy controls (matched for age, gender). None of the cases or controls had a history of diabetes, serious cardio-cerebral vascular diseases, liver and kidney dysfunction that might influence plasma lipid levels. Plasma HDL-C was detected by enzyme-linked immunosorbent one-step, through the Toshiba TBA-40FR automatic biochemical analyzer. CETP TaqIB gene polymorphism was determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques for analysis. B2B2 genotype was only a fluorescence band with 535 bp; B1B1 genotype was 2 fluorescence bands with 361, 174 bp; B1B2 genotype was 3 fluorescence bands with 535, 361, 174 bp. The relative risk of genotype, HDL-C and disease occurrence was analyzed by logistics regression analysis. ResultsThere have no significant difference between NA-AION patients and controls about plasma total cholesterol level and triglyceride level (t=1.907, 1.877; P > 0.05). The plasma HDL-C levels were significantly lower in NA-AION patients than in controls (t=2.367, P=0.022). Compared with controls, the prevalence of B1B1 genotype and B1 allele was higher (χ2=17.289, P=0.001), the prevalence of B2 allele (χ2=15.648, P=0.000) was lower in NA-AION patients. The lower concentration of HDL-C was risk factor of NA-AION (odds ratio=6.143, 95% confidence interval 1.262-29.895, χ2=27.676;P=0.013). The proportion of B1B1 genotype was significantly higher in NA-AION patients than in controls (odds ratio=2.24, 95% confidence interval 2.427-36.323, χ2=10.526; P=0.001). ConclusionsThe low plasma HDL-C is independent risk factor for NA-AION and is associated with the development of NA-AION in the Shaanxi Han ethnic population. CETP TaqIB mutation is associated with low plasma HDL-C in NA-AION in the Shaanxi Han ethnic population.