Objective To observe the digital subtraction angiography (DSA) characteristics of ophthalmic artery and its main branches in ischemic cerebrovascular disease (ICVD). Methods The internal carotid arteries, external carotid arteries and ophthalmic arteries of 32 ICVD patients were examined for DSA. The characteristics of ophthalmic artery origin, trail and main branches were observed. Results Among 64 carotid arteries of 32 patients, there was one carotid artery with internal occlusion, there was no severe stenosis in the other 63 carotid arteries. The 63 ophthalmic arteries originated all from supraclinoidal and ophthalmic segments of internal carotid arteries. 58 ophthalmic arteries were single branch from the internal carotid artery. 5 ophthalmic arteries had 2 branches, one come from the internal carotid artery, the other come from the middle meningeal artery (external carotid artery branch ) in 4 cases or from the anterior cerebral artery (carotid artery branch) in 1 case. The main branches of ophthalmic artery included central retinal artery, posterior ciliary artery, lacrimal gland artery, ocular muscular artery; anterior ethmoid artery, posterior ethmoid artery, supraorbital artery, dorsal nasal artery, supratrochlear artery and eyelid artery. The beginning point of each branches were variable. Conclusions Ophthalmic arteries of ICVD patients primary arise from the internal carotid artery. It most often appears as single branch and occasionally as double branches. The beginning points of major branches of ophthalmic artery are variable.
ObjectivesTo explore the changes of some peripheral blood cells related to inflammation in patients with non-arteritis central retinal artery occlusion (NA-CRAO). MethodsA retrospective clinical study. From July 2019 to July 2021, a total of 218 patients with NA-CRAO hospitalized (NA-CRAO group) in Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital) and 218 patients with routine physical examination (control group) during the same period were included in the study. There were no significant differences in age (t=0.60), sex composition ratio (χ2=0.83) and body mass index (t=0.77) between the two groups (P>0.05). 0.2 ml fasting peripheral blood was collected from the subject, and white blood cells (WBC), neutrophils (NEUT), lymphocytes (LYMPH), red blood cells (RBC), RBC distribution width (RDW), platelets (PLT), mean PLT volume (MPV), and large PLT ratio (PLCR) were detected. The NEUT/LYMPH ratio (NLR) and PLT/LYMPH ratio (PLR) were calculated. t test was used to compare measurement data between groups. Multiple logistic regression analysis was performed for blood cells with P<0.05. The receiver operating characteristic curve (ROC curve) was used to calculate the area under the curve (AUC) and 95% confidence interval (95%CI) of each inflammatory indicator, and the optimal cutoff value was determined according to the Jorden index (sensitivity+specificity-1). ResultsCompared with control group, WBC, NEUT, NLR, RDW, PLR were increased in NA-CRAO group, while RBC and LYMPH were decreased, with statistical significance (t=9.68, 12.43, 9.47, 3.64, 5.54, 5.18, 0.46; P<0.001). There was no significant difference in PLT, MPV and PLCR between the two groups (t=0.32, 1.56, 0.84; P>0.05). Multivariate logistic regression analysis showed that NLR was a possible risk factor for the occurrence of NA-CRAO (odds ratio=2.51, 95%CI 0.780-0.859, P=0.031). ROC curve analysis showed that the AUC predicted by NLR was 0.819, the optimal critical value was 3.05, and the sensitivity and specificity were 59.2% and 92.7%, respectively. ConclusionsIn peripheral blood cells of NA-CRAO patients, NEUT is significantly increased and LYMPH is decreased. NLR is a possible risk factor for NA-CRAO.
ObjectiveTo study the effect of inhibitor of differentiation 1 (Id1) gene transfection on bone morphogenetic protein 2 (BMP-2) promoting the expressions of collagen type Ⅱ (COL Ⅱ) and aggrecan (ACAN) in intervertebral cartilage endplate cells (EPCs). MethodsEPCs were harvested from the New Zealand white rabbits, the 2nd generation EPCs were used for experiment. The transfection efficiency of green fluorescent protein blank lentivirus, high expression of Id1 lentivirus, RNA interference (RNAi) Id1 lentivirus transfection in the EPCs were observed by the fluorescence microscopy, real-time fluorescence quantitative PCR, and Western blot. Blank vector, single BMP-2 gene, BMP-2 and Id1 genes were transfected into EPCs, respectively. The cell morphology and the expressions of COL Ⅱ and ACAN in each group were observed. ResultsLentiviral transfection had no significant effect on the cell morphology. The EPCs were effectively transfected by the high expression Id1 lentivirus and RNAi Id1 lentivirus; the expression of Id1 mRNA was also significantly interfered. The expressions of COL Ⅱ and ACAN mRNA and synthesis of COL Ⅱ and ACAN protein were significantly higher in BMP-2 lentivirus and high expression Id1 lentivirus groups than control group (P<0.05). The expression of COL Ⅱ and ACAN protein were down regulated in the cartilage endplate cells when the expression of Id1 gene was decreased (P<0.05). ConclusionUp-regulation of Id1 gene expression can enhance the effects of BMP-2 on the synthesis of COL Ⅱ and ACAN in EPCs.
Objective To investigate if the course of intervertebral disc degeneration (IDD) is delayed by injecting lentivirus (Lv) vector carrying bone morphogenetic protein 2 (BMP-2) and inhibitor of differentiation 1 (Id1) genes directly into the nucleus pulposus. Methods Thirty-two New Zealand white rabbits, 2.0-2.5 kg in weight and 4 months in age, were used to establish the IDD models at L3, 4, L4, 5, and L5, 6 discs with annular puncture via transabdominal approach. Thirty rabbits with successful modeling were randomly divided into 5 groups, 6 rabbits every group. At 4 weeks after modeling, rabbits were injected with Lv-BMP-2 (group A), with Lv-BMP-2 and Lv-Id1 (group B), with Lv-Id1 (group C), with Lv-green fluorescent protein (group D), and with PBS (group E). At 2, 4, and 8 weeks after injection, T2-mapping MRI was performed on 2 rabbits each group to obtain the T2 values, and then subsequently the lumbar disc tissues were harvested to test the mRNA expressions and contents of collagen type II and proteoglycan by real-time fluorescent quantitative PCR and ELISA methods. Results T2-mapping MRI demonstrated that there was no significant difference in the T2 value between different groups at immediate and 2 weeks after injection (P>0.05). The T2 value of groups A and B was significantly higher than that of groups C, D, and E at 4 weeks after injection (P<0.05), but no significant difference was observed between group A and group B (P>0.05). The T2 value of group B was significantly higher than that of the other groups at 8 weeks after injection (P<0.05). The real-time fluorescent quantitative PCR and ELISA showed that the expressions and contents of collagen type II and proteoglycan in group B were significantly higher than those in the other groups at 2, 4, and 8 weeks after injection (P<0.05). Conclusion Combined application of Lv-BMP-2 and Lv-Id1 can delay IDD changes in rabbit IDD models.
Objective To observe the clinical effect of intravenous thrombolytic therapy for central retinal artery occlusion (CRAO) with poor effect after the treatment of arterial thrombolytic therapy. Methods Twenty-four CRAO patients (24 eyes) with poor effect after the treatment of arterial thrombolytic therapy were enrolled in this study. There were 11 males and 13 females. The age was ranged from 35 to 80 years, with the mean age of (56.7±15.6) years. There were 11 right eyes and 13 left eyes. The visual acuity was tested by standard visual acuity chart. The arm-retinal circulation time (A-Rct) and the filling time of retinal artery and its branches (FT) were detected by fluorescein fundus angiography (FFA). The visual acuity was ranged from light sensation to 0.5, with the average of 0.04±0.012. The A-Rct was ranged from 18.0 s to 35.0 s, with the mean of (29.7±5.8) s. The FT was ranged from 4.0 s to 16.0 s, with the mean of (12.9±2.3) s. All patients were treated with urokinase intravenous thrombolytic therapy. The dosage of urokinase was 3000 U/kg, 2 times/d, adding 250 ml of 0.9% sodium chloride intravenous drip, 2 times between 8 - 10 h, and continuous treatment of FFA after 5 days. Comparative analysis was performed on the visual acuity of the patients before and after treatment, and the changes of A-Rct and FT. Results After intravenous thrombolytic therapy, the A-Rct was ranged from 16.0 s to 34.0 s, with the mean of (22.4±5.5) s. Among 24 eyes, the A-Rct was 27.0 - 34.0 s in 4 eyes (16.67%), 18.0 - 26.0 s in 11 eyes (45.83%); 16.0 - 17.0 s in 9 eyes (37.50%). The FT was ranged from 2.4 s to 16.0 s, with the mean of (7.4±2.6) s. Compared with before intravenous thrombolytic therapy, the A-Rct was shortened by 7.3 s and the FT was shortened by 5.5 s with the significant differences (χ2=24.6, 24.9; P<0.01). After intravenous thrombolytic therapy, the visual acuity was ranged from light sensation to 0.6, with the average of 0.08±0.011. There were 1 eye with vision of light perception (4.17%), 8 eyes with hand movement/20 cm (33.33%), 11 eyes with 0.02 - 0.05 (45.83%), 2 eyes with 0.1 - 0.2 (8.33%), 1 eye with 0.5 (4.17%) and 1 eye with 0.6 (4.17%). The visual acuity was improved in 19 eyes (79.17%). The difference of visual acuity before and after intravenous thrombolytic therapy was significant (χ2=7.99, P<0.05). There was no local and systemic adverse effects during and after treatment. Conclusion Intravenous thrombolytic therapy for CRAO with poor effect after the treatment of arterial thrombolytic therapy can further improve the circulation of retinal artery and visual acuity.
ObjectiveTo observe the efficacy and safety of urokinase arterial thrombolysis in the treatment of central retinal artery occlusion (CRAO) at different time window.MethodsA retrospective study. From January 2014 to November 2019, 157 eyes (157 CRAO patients) in the Xi’an People's Hospital (Xi’an Fourth Hospital) were included in the study. There were 120 males and 37 females, with the average age of 54.87±12.12 years. The mean onset time was 65.66±67.44 h. All patients were tested with BCVA using international standard visual acuity chart, and the results were converted into logMAR visual acuity record. The arm-retinal circulation time (A-Rct) and the filling time (FT) of retinal arterial trunk-terminal filling time were measured by FFA. The mean logMAR BCVA was 2.44±0.46, the mean A-Rct and FT were 27.72±9.78 and 13.58±14.92 s respectively. According to the time window, the patients were divided into the onset 3-72 h group and the onset 73-240 h group, which were 115 patients and 42 patients respectively. There were no statistically significant difference between the 3-72 h group and the 73-240 h group in age, A-Rct and LogMR BCVA before treatment (χ2=-0.197, -1.242, -8.990; P=0.844, 0.369, 0.369); the difference was statistically significant in FT comparison (χ2=-3.652, P=0.000). Urokinase artery thrombolytic therapy was performed at different time window of 3-24 h, 25-72 h, 73-96 h, 97-120 h, 121-240 h after the onset of onset. Age and A-Rct of patients with different treatment time windows were compared, and the differences were not statistically significant (χ2=6.588, 6.679; P=0.253, 0.246).In comparison of FT and logMAR BCVA, the difference was statistically significant (χ2 =30.150, 71.378; P=0.000, 0.000). FFA was rechecked 24 hours after treatment, BCVA was rechecked 30 days after treatment. The changes of A-Rct, FT and BCVA before and after treatment were compared and analyzed. The occurrence of adverse reactions during and after treatment were observed. The two groups of measurement data were compared. The t test was used for those with normal distribution and χ2 test was used for those with non-normal distribution. Spearman correlation analysis was used to analyze the correlation between onset time and the difference of A-Rct, FT shortening time and logMAR BCVA after treatment.ResultsAt 24 h after CRAO treatment, A-Rct and FT of 157 cases were 19.64±6.50 and 6.48±7.36 s respectively, which were significantly shorter than those before treatment, and the differences were statistically significant (χ2=-16.236, -14.703; P=0.000, 0.000). The logMAR BCVA at 30 d after treatment was 1.72±0.76, which was significantly higher than that before treatment. The difference was statistically significant (χ2=-14.460, P=0.000). After CRAO urokinase arterial thrombolysis at different time window, there were statistically significant differences in A-Rct shortening time, FT shortening time, and logMAR BCVA difference (χ2=12.408, 24.200, 104.388; P=0.030, 0.000, 0.000). There was no statistically significant difference between the 3-72 h group and the 73-240 h group (χ2 =-1.042, P=0.297) in shortening time of A-Rct after treatment. The difference of FT shortening time was statistically significant (χ2=-3.581, P=0.000). The difference of logMAR BCVA was statistically significant (χ2=-9.905, P=0.000). The results of Spearman correlation analysis showed that there was no correlation between the onset time and the shortening time of A-Rct and FT after treatment (rp=-0.040, -0.081; P=0.436, 0.115), and negative correlation with the logMAR BCVA difference (rp=-0.486, P=0.000). One case of intracranial hemorrhage occurred after treatment, and it improved after dehydration to reduce cerebral edema, scavenging free radicals and brain protection.ConclusionsUrokinase arterial thrombolytic therapy is effective for CRAO within time window of 3-240 h, A-Rct, FT and LogMRA BCVA are all improved. However, with the prolongation of thrombolytic therapy time window, the therapeutic effect of urokinase arterial thrombolytic therapy is decreased. The therapeutic effect of Urokinase arterial thrombolytic therapy was better within 72 h.
ObjectiveTo observe the clinical effect of super-selective ophthalmic artery or selective carotid artery thrombolytic therapy for central retinal artery occlusion (CRAO). MethodsTwelve CRAO patients (12 eyes) were enrolled in this study. The patients included 7 males and 5 females. The age was ranged from 19 to 68 years old, with an average of (50.0±3.5) years. The disease duration was from 8 to 72 hours, with a mean of 18 hours. All the patients were received the treatment of super-selective ophthalmic artery or selective carotid artery thrombolysis with urokinase (total 0.20-0.4 million U) and injection of papaverine 30 mg. Five patients received the treatment of super-selective ophthalmic artery thrombolytic therapy, 7 patients received the treatment of selective carotid artery thrombolytic therapy (4 patients because of the financial issues, 3 patients because of thin ophthalmic artery). According to the visual acuity of post-treatment and pre-treatment, the therapeutic effects on vision were defined as effective markedly (improving three lines or more), effective (improving two lines) and no effect (no change or a decline). According to the arm-retinal circulation time (A-Rct) and filling time of retinal artery and its branches (FT) on fluorescence fundus angiography (FFA), the therapeutic effects on retinal circulation were defined as effective markedly (A-Rct 15 s, FT 2 s), effective (A-Rct was improved but in the range of 16-20 s, FT was in 3-8 s) and no effect (A-Rct was improved but 21 s, FT 9 s). ResultsThe vision changes showed effective markedly in 5 eyes (41.7%), effective in 5 eyes (41.7%), no effect in 2 eyes (16.6%). The total therapeutic efficiency on vision was 83.4%. The retinal circulation was improved in all eyes after treatment, including effective markedly in 8 eyes (67.0%), effective in 4 eyes (33.0%). The total therapeutic efficiency on retinal circulation was 100.0%. No complications occurred in these 12 patients during the treatment or follow-up, such as puncture site hematoma, intracranial hemorrhage, cerebral embolism, eye movement abnormalities, retinal and vitreous hemorrhage. ConclusionSuper-selective ophthalmic artery and selective carotid artery thrombolytic therapy were effective in the treatment of CRAO.
ObjectiveTo compare the clinical effects of urokinase thrombolytic therapy for optic artery occlusion (OAO) and retinal artery occlusion (RAO) caused by facial microinjection with hyaluronic acid and spontaneous RAO.MethodsFrom January 2014 to February 2018, 22 eyes of 22 patients with OAO and RAO caused by facial microinjection of hyaluronic acid who received treatment in Xi'an Fourth Hospital were enrolled in this retrospective study (hyaluronic acid group). Twenty-two eyes of 22 patients with spontaneous RAO were selected as the control group. The BCVA examination was performed using the international standard visual acuity chart, which was converted into logMAR visual acuity. FFA was used to measure arm-retinal circulation time (A-Rct) and filling time of retinal artery and its branches (FT). Meanwhile, MRI examination was performed. There were significant differences in age and FT between the two groups (t=14.840, 3.263; P=0.000, 0.003). The differecens of logMAR visual acuity, onset time and A-Rct were not statistically significant between the two groups (t=0.461, 0.107, 1.101; P=0.647, 0.915, 0.277). All patients underwent urokinase thrombolysis after exclusion of thrombolytic therapy. Among the patients in the hyaluronic acid group and control group, there were 6 patients of retrograde ophthalmic thrombolysis via the superior pulchlear artery, 6 patients of retrograde ophthalmic thrombolysis via the internal carotid artery, and 10 patients of intravenous thrombolysis. FFA was reviewed 24 h after treatment, and A-Rct and FT were recorded. Visual acuity was reviewed 30 days after treatment. The occurrence of adverse reactions during and after treatment were observed. The changes of logMAR visual acuity, A-Rct and FT before and after treatment were compared between the two groups using t-test.ResultsAt 24 h after treatment, the A-Rct and FT of the hyaluronic acid group were 21.05±3.42 s and 5.05±2.52 s, which were significantly shorter than before treatment (t=4.569, 2.730; P=0.000, 0.000); the A-Rct and FT in the control group were 19.55±4.14 s and 2.55±0.91 s, which were significantly shorter than before treatment (t=4.114, 7.601; P=0.000, 0.000). There was no significant difference in A-Rct between the two groups at 24 h after treatment (t=1.311, P=0.197). The FT difference was statistically significant between the two groups at 24 h after treatment (t=4.382, P=0.000). There was no significant difference in the shortening time of A-Rct and FT between the two groups (t=0.330, 0.510; P=0.743, 0.613). At 30 days after treatment, the logMAR visual acuity in the hyaluronic acid group and the control group were 0.62±0.32 and 0.43±0.17, which were significantly higher than those before treatment (t=2.289, 5.169; P=0.029, 0.000). The difference of logMAR visual acuity between the two groups after treatment was statistically significant (t=2.872, P=0.008). The difference in logMAR visual acuity before and after treatment between the two groups was statistically significant (t=2.239, P=0.025). No ocular or systemic adverse reactions occurred during or after treatment in all patients. ConclusionsUrokinase thrombolytic therapy for OAO and RAO caused by facial microinjection with hyaluronic acid and spontaneous RAO is safe and effective, with shortening A-Rct, FT and improving visual acuity. However, the improvement of visual acuity after treatment of OAO and RAO caused by facial microinjection with hyaluronic acid is worse than that of spontaneous RAO.
Objective To observe the clinical and imaging features of non-arteriotic central retinal artery occlusion (NA-CRAO) with internal boundary membrane detachment (ILMD), and to analyze its relationship with visual prognosis. MethodsA retrospective clinical study. A total of 88 patients with NA-CRAO hospitalized in Department of Ophtalmology, Xi'an People's Hospital (Xi'an Fourth Hospital) from January 2014 to June 2023 were included in the study. Best corrected visual acuity (BCVA), optical coherence tomography (OCT) and fluorescein fundus angiography (FFA) were performed. The BCVA test used the international standard visual acuity chart, which was statistically converted to the logarithm of the minimum angle of resolution (logMAR) visual acuity. OCT observed the presence of ILMD and the thickening of the inner retina and the disappearance of anatomical stratification. FFA recorded arm-retinal circulation time (A-Rct) and retinal arterion-distal filling time (FT), and observed ciliary retinal artery, fluorescein retrograde filling, cotton spots, luciferin nodal filling, macular non-perfusion, capillary fluorescein leakage, optic disc strong fluorescence, choroidal background weak fluorescence and other characteristics. According to whether there was ILMD, the patients were divided into ILMD group and non-ILMD group, with 44 cases and 44 eyes respectively. The two groups received the same treatment. The follow-up time was 30 days after treatment. The clinical, FFA characteristics and BCVA before and after treatment were compared between the two groups. t-test was used for comparison between groups. ResultsIn ILMD group and non-ILMD group, there were 43 cases of male and 1 case of female, respectively, and the proportion of male was significantly higher than that of female. Before and after treatment, the logMAR BCVA of ILMD group and non-ILMD group were 2.35±0.42, 2.01±0.46, 1.47±0.60, 0.77±0.49, respectively. There were significant differences in logMAR BCVA between the two groups before and after treatment (t=8.025, 12.358; P<0.001). Before treatment, A-Rct and FT in ILMD group were longer than those in non-ILMD group, and the difference was statistically significant (t=3.052, 3.385; P<0.05). After treatment, there was no significant difference (t=1.040, 1.447; P>0.05). The proportion of ciliary retinal artery and cotton plaque in ILMD group was lower than that in non-ILMD group. There was no significant difference in ciliary retinal artery between the two groups (χ2=-0.961, P>0.05), but there was a significant difference in cotton wool plaque between the two groups (χ2=-3.364, P<0.05). Compared to the non-ILMD group, The proportion of retrograde fluorescein filling in retinal artery (χ2=-2.846), segment filling (χ2=-3.907), macular non-perfusion (χ2=-6.656), capillary fluorescein leakage (χ2=-4.367), optic disc strong fluorescence (χ2=-3.525) and choroidal background weak fluorescence (χ2=-2.276) increased, the difference was statistically significant (P<0.05). ConclusionsIn patients with NA-CRAO, compared with those without ILMD, those with ILMD have more severe retinal ischemia and worse BCVA before and after treatment. ILMD is one of the poor prognostic markers of NA-CRAO vision.