west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "3-D打印技术" 17 results
  • USE OF FOUR KINDS OF THREE-DIMENSIONAL PRINTING GUIDE PLATE IN BONE TUMOR RESECTION AND RECONSTRUCTION OPERATION

    ObjectiveTo explore the effectiveness of excision and reconstruction of bone tumor by using operation guide plate made by variety of three-dimensional (3-D) printing techniques, and to compare the advantages and disadvantages of different 3-D printing techniques in the manufacture and application of operation guide plate. MethodsBetween September 2012 and January 2014, 31 patients with bone tumor underwent excision and reconstruction of bone tumor by using operation guide plate. There were 19 males and 12 females, aged 6-67 years (median, 23 years). The disease duration ranged from 15 days to 12 months (median, 2 months). There were 13 cases of malignant tumor and 18 cases of benign tumor. The tumor located in the femur (9 cases), the spine (7 cases), the tibia (6 cases), the pelvis (5 cases), the humerus (3 cases), and the fibula (1 case). Four kinds of 3-D printing technique were used in processing operation guide plate:fused deposition modeling (FDM) in 9 cases, stereo lithography appearance (SLA) in 14 cases, 3-D printing technique in 5 cases, and selective laser sintering (SLS) in 3 cases; the materials included ABS resin, photosensitive resin, plaster, and aluminum alloy, respectively. Before operation, all patients underwent thin layer CT scanning (0.625 mm) in addition to conventional imaging. The data were collected for tumor resection design, and operation guide plate was designed on the basis of excision plan. Preoperatively, the operation guide plates were made by 3-D printing equipment. After sterilization, the guide plates were used for excision and reconstruction of bone tumor. The time of plates processing cycle was recorded to analyse the efficiency of 4 kinds of 3-D printing techniques. The time for design and operation and intraoperative fluoroscopy frequency were recorded. Twenty-eight patients underwent similar operations during the same period as the control group. ResultsThe processing time of operation guide plate was (19.3±6.5) hours in FDM, (5.2±1.3) hours in SLA, (8.6±1.9) hours in 3-D printing technique, and (51.7±12.9) hours in SLS. The preoperative design and operation guide plate were successfully made, which was used for excision and reconstruction of bone tumor in 31 cases. Except 3 failures (operation guide plate fracture), the resection and reconstruction operations followed the preoperative design in the other 28 cases. The patients had longer design time, shorter operation time, and less fluoroscopy frequency than the patients of the control group, showing significant differences (P<0.05). The follow-up time was 1-12 months (mean, 3.7 months). Postoperative X-ray and CT showed complete tumor resection and stable reconstruction. Conclusion3-D printing operation guide plates are well adapted to the requirements of individual operation for bone tumor resection and reconstruction. The 4 kinds of 3-D printing techniques have their own advantages and should be chosen according to the need of operation.

    Release date: Export PDF Favorites Scan
  • APPLICATION OF THREE-DIMENSIONAL PRINTING TECHNIQUE IN CORRECTION OF MANDIBULAR PROGNATHISM

    ObjectiveTo establish a method to prefabricate titanium plate with three-dimensional (3-D) printing technique for correction of mandibular prognathism in sagittal splint ramous osteotomy (SSRO). MethodsBetween January 2012 and May 2013, 12 patients with mandibular prognathism (Angle III malocclusion) were treated. Among them, 9 cases were male and 3 cases were female. Their ages ranged from 19 to 35 years (mean, 25.6 years). With the 3-D facial CT data of these patients, 3-D printer was used to print the models for preoperational simulation. SSRO was performed on 3-D models, and the titanium plates were prefabricated on the models after the distal segments were moved backward and rotated according to occlusal splint. During operations, the proximal segments were fixed to distal segments by the prefabricated titanium plates. 3-D CT scans were taken to examine the temporomandibular joint position changes before operation and at 6 months after operation. ResultsThe skull models were manufactured by 3-D printing technique, and the titanium plates were reshaped on the basis of them. Twenty-four prefabricated titanium plates were placed during operations, and they all matched with the bone segments well. Evaluation of 3-D CT scans showed that the temporomandibular joint position had no change. All patients were followed up 7-12 months (mean, 10.6 months). The face type and dental articulation were improved greatly. All cases obtained satisfactory opening function and occlusion. ConclusionWith the titanium plate fabricated based on 3-D models, surgeons are able to improve or refine surgical planning so that the operation can be performed according to preoperative simulation precisely and the complications, such as dislocation of temporomandibular joint, can be prevented.

    Release date: Export PDF Favorites Scan
  • APPLICATION OF DIGITAL DESIGN AND THREE-DIMENSIONAL PRINTING TECHNIQUE ON INDIVIDUALIZED MEDICAL TREATMENT

    ObjectiveTo summarize the latest research development of the application of digital design and three-dimensional (3-D) printing technique on individualized medical treatment. MethodsRecent research data and clinical literature about the application of digital design and 3-D printing technique on individualized medical treatment in Xi'an Jiaotong University and its cooperation unit were summarized, reviewed, and analyzed. ResultsDigital design and 3-D printing technique can design and manufacture individualized implant based on the patient's specific disease conditions. And the implant can satisfy the needs of specific shape and function of the patient, reducing dependence on the level of experience required for the doctor. So 3-D printing technique get more and more recognition of the surgeon on the individualized repair of human tissue. Xi'an Jiaotong University is the first unit to develop the commercial 3-D printer and conduct depth research on the design and manufacture of individualized medical implant. And complete technological processes and quality standards of product have been developed. ConclusionThe individualized medical implant manufactured by 3-D printing technique can not only achieve personalized match but also meet the functional requirements and aesthetic requirements of patients. In addition, the individualized medical implant has the advantages of accurate positioning, stable connection, and high strength. So 3-D printing technique has broad prospects in the manufacture and application of individualized implant.

    Release date: Export PDF Favorites Scan
  • APPLICATION OF THREE-DIMENSIONAL PRINTING TECHNIQUE IN ARTIFICIAL BONE FABRICATION FOR BONE DEFECT AFTER MANDIBULAR ANGLE OSTECTOMY

    ObjectiveTo investigate the application of three-dimensional (3-D) printing technique combining with 3-D CT and computer aided-design technique in customized artificial bone fabrication, correcting mandibular asymmetry deformity after mandibular angle ostectomy. MethodsBetween April 2011 and June 2013, 23 female patients with mandibular asymmetry deformity after mandibular angle ostectomy were treated. The mean age was 27 years (range, 22-34 years). The disease duration of mandibular asymmetry deformity was 6-16 months (mean, 12 months). According to the CT data and individualized mandibular angle was simulated based on mirror theory, 3-D printed implants were fabricated as the standard reference for manufacturers to fabricated artificial bone graft, and then mandible repair operation was performed utilizing the customized artificial bone to improve mandibular asymmetry. ResultsThe operation time varied from 40 to 60 minutes (mean, 50 minutes). Primary healing of incisions was obtained in all patients; no infection, hematoma, and difficulty in opening mouth occurred. All 23 patients were followed up 3-10 months (mean, 6.7 months). After operation, all patients obtained satisfactory facial and mandibular symmetry. 3-D CT reconstructive examination results after 3 months of operation showed good integration of the artificial bone. Conclusion3-D printing technique combined with 3-D CT and computer aided design technique can be a viable alternative to the approach of maxillofacial defects repair after mandibular angle ostectomy, which provides a accurate and easy way.

    Release date: Export PDF Favorites Scan
  • FABRICATION AND IN VIVO IMPLANTATION OF LIGAMENT-BONE COMPOSITE SCAFFOLDS BASED ON THREE-DIMENSIONAL PRINTING TECHNIQUE

    ObjectiveTo solve the fixation problem between ligament grafts and host bones in ligament reconstruction surgery by using ligament-bone composite scaffolds to repair the ligaments, to explore the fabrication method for ligament-bone composite scaffolds based on three-dimensional (3-D) printing technique, and to investigate their mechanical and biological properties in animal experiments. MethodsThe model of bone scaffolds was designed using CAD software, and the corresponding negative mould was created by boolean operation. 3-D printing techinique was employed to fabricate resin mold. Ceramic bone scaffolds were obtained by casting the ceramic slurry in the resin mould and sintering the dried ceramics-resin composites. Ligament scaffolds were obtained by weaving degummed silk fibers, and then assembled with bone scaffolds and bone anchors. The resultant ligament-bone composite scaffolds were implanted into 10 porcine left anterior cruciate ligament rupture models at the age of 4 months. Mechanical testing and histological examination were performed at 3 months postoperatively, and natural anterior cruciate ligaments of the right sides served as control. ResultsBiomechanical testing showed that the natural anterior cruciate ligament of control group can withstand maximum tensile force of (1 384±181) N and dynamic creep of (0.74±0.21) mm, while the regenerated ligament-bone scaffolds of experimental group can withstand maximum tensile force of (370±103) N and dynamic creep of (1.48±0.49) mm, showing significant differences (t=11.617,P=0.000; t=-2.991,P=0.020). In experimental group, histological examination showed that new bone formed in bone scaffolds. A hierarchical transition structure regenerated between ligament-bone scaffolds and the host bones, which was similar to the structural organizations of natural ligament-bone interface. ConclusionLigament-bone composite scaffolds based on 3-D printing technique facilitates the regeneration of biomimetic ligament-bone interface. It is expected to achieve physical fixation between ligament grafts and host bone.

    Release date: Export PDF Favorites Scan
  • CONSTRUCTION OF LARGE BLOCK OF ENGINEERED LIVER TISSUE SEEDED WITH CO-CULTURED CELLS AND IN VIVO IMPLANTATION RESEARCH

    ObjectiveTo construct large block of engineered liver tissue by co-culture of fibroblasts and hepatocytes on collagen hydrogels in vitro and do in vivo implantation research. MethodsSilastic mould was prepared using three-dimensional printing technology. The collagen hydrogel scaffold was prepared by collagen hydrogel gel in the silicone mould and was removed. Sprague Dawley rat lung fibroblasts were co-cultured with primary hepatocytes at a ratio of 0.4:1 on the collagen hydrogel scaffold to construct large block of engineered liver tissue in vitro (group B), and primary hepatocytes cultured on the collagen hydrogel scaffold served as control group (group A). The cell morphology was observed, and the liver function was tested at 1, 3, 7, 14, and 21 days after culture. The rat model (n=24) of hepatic cirrhosis was made by subcutaneous injection of carbon tetrachloride. And in vivo implantation study was carried in cirrhosis rat model. The phenotypic characteristics and functional expression of hepatocytes were evaluated at 3, 7, 14, 21, and 28 days after implantation. ResultsIn vitro results indicated that hepatocytes in group B exhibited compact polyhedral cells with round nuclei and high expression of liver function. Moreover, cells aggregated to the most at 7 days. Album production and urea synthesis incresed significantly when compared with group A (P<0.05). In vivo results showed hepatocytes in group B survived for 28 days, and albumin production and urea synthesis were significantly increased. In addition, hepatocytes showed an aggregated distribution and cord-like structures, which was similar to normal liver tissue. ConclusionThe large block of engineered liver tissue constructed by co-cultured cells can form tissue similar to normal liver tissue in vivo, and survive for a long time, laying foundations for building more complete engineered liver tissue in the future.

    Release date: Export PDF Favorites Scan
  • CARTILAGE REPAIR AND SUBCHONDRAL BONE RECONSTRUCTION BASED ON THREE-DIMENSIONAL PRINTING TECHNIQUE

    ObjectiveTo investigate whether subchondral bone microstructural parameters are related to cartilage repair during large osteochondral defect repairing based on three-dimensional (3-D) printing technique. MethodsBiomimetic biphasic osteochondral composite scaffolds were fabricated by using 3-D printing technique. The right trochlea critical sized defects (4.8 mm in diameter, 7.5 mm in depth) were created in 40 New Zealand white rabbits (aged 6 months, weighing 2.5-3.5 kg). Biomimetic biphasic osteochondral composite scaffolds were implanted into the defects in the experimental group (n=35), and no composite scaffolds implantation served as control group (n=5); the left side had no defect as sham-operation group. Animals of experimental and sham-operation groups were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after operation, while animals of control group were sampled at 24 weeks. Subchondral bone microstructural parameters and cartilage repair were quantitatively analyzed using Micro-CT and Wayne scoring system. Correlation analysis and regression analysis were applied to reveal the relationship between subchondral bone parameters and cartilage repair. The subchondral bone parameters included bone volume fraction (BV/TV), bone surface area fraction (BSA/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular spacing (Tb.Sp). ResultsIn the experimental group, articular cartilage repair was significantly improved at 52 weeks postoperatively, which was dominated by hyaline cartilage tissue, and tidal line formed. Wayne scores at 24 and 52 weeks were significantly higher than that at 16 weeks in the experimental group (P<0.05), but no significant difference was found between at 24 and 52 weeks (P>0.05); the scores of experimental group were significantly lower than those of sham-operation group at all time points (P<0.05). In the experimental group, new subchondral bone migrated from the surrounding defect to the centre, and subchondral bony plate formed at 24 and 52 weeks. The microstructural parameters of repaired subchondral bone followed a "twin peaks" like discipline to which BV/TV, BSA/BV, and Tb.N increased at 2 and 16 weeks, and then they returned to normal level. The Tb.Sp showed reversed discipline compared to the former 3 parameters, no significant change was found for Tb.Th during the repair process. Correlation analysis showed that BV/TV, BSA/BV, Tb.Th, Tb.N, and Tb.Sp were all related with gross appearance score and histology score of repaired cartilage. ConclusionSubchondral bone parameters are related with cartilage repair in critical size osteochondral repair in vivo. Microstructural parameters of repaired subchondral bone follow a "twin peaks" like discipline (osteoplasia-remodeling-osteoplasia-remodeling) to achieve reconstruction, 2nd week and 16th week are critical time points for subchondral bone functional restoration.

    Release date: Export PDF Favorites Scan
  • EFFECTIVENESS OF HIGH TIBIAL OSTEOTOMY ASSISTED BY THREE-DIMENSIONAL PRINTING TECHNOLOGY FOR CORRECTION OF VARUS KNEE WITH OSTEOARTHRITIS

    ObjectiveTo evaluate the effectiveness of high tibial osteotomy (HTO) assisted by three-dimensional (3-D) printing technology for correction of varus knee with osteoarthritis. MethodBetween January 2014 and June 2015, 16 patients (20 knees) with varus knee and osteoarthritis underwent HTO assisted by 3-D printing technology; a locking compression plate was used for internal fixation after HTO. There were 6 males and 10 females, aged 30-60 years (mean, 45.5 years). The disease duration was 1-10 years (mean, 6.2 years). The unilateral knee was involved in 12 cases and bilateral knees in 4 cases. According to Koshino's staging system, 3 knees were classified as stage I, 7 knees as stage Ⅱ, 8 knees as stage Ⅲ, and 2 knees as stage IV. Preoperative Hospital for Special Surgery (HSS) knee score was 63.8±2.2; the femorotibial angle was (184.8±2.9) °; and Insall-Salvati index was 1.03±0.13. ResultsAll the wounds healed primarily, and no complication of infection, osteofacial compartment syndrom, or deep vein thrombosis was observed. All patients were followed up 6-18 months (mean, 12.6 months). Personal paralysis was observed in 1 case (1 knee), and was cured after expectant treatment. Bone union time was 2.7-3.4 months (mean, 2.9 months). At 6 months after operation, the femorotibial angle was (173.8±2.0) °, showing significant difference when compared with preoperative one (t=11.70, P=0.00) ; Insall-Salvati index was 1.04±0.12, showing no significant difference when compared with preoperative one (t=-0.20, P=0.85) ; and HSS knee score was significantly increased to 88.9±3.1 (t=-25.44, P=0.00) . At last follow-up, the results were excellent in 13 knees, good in 6 knees, fair in 1 knee, and the excellent and good rate was 95%. Conclusions3-D printing cutting block can greatly improve the accuracy of HTO, avoid repeated X-ray and multiple osteotomy, shorten the operation time, and ensure better effectiveness for correction of varus knee with osteoarthritis.

    Release date: Export PDF Favorites Scan
  • 加快发展3-D打印技术、扩展修复重建外科应用领域

    Release date: Export PDF Favorites Scan
  • THREE-DIMENSIONAL PLOTTING IS A VERSATILE RAPID PROTOTYPING METHOD FOR THE CUSTOMIZED MANUFACTURING OF COMPLEX SCAFFOLDS AND TISSUE ENGINEERING CONSTRUCTS

    ObjectiveTo review recent literature on three-dimensional (3-D) plotting as a rapid prototyping method for the manufacturing of patient specific biomaterial scaffolds and tissue engineering constructs. MethodsLiterature review and description of own recent work. ResultsIn contrast to many other rapid prototyping technologies which can be used only for the processing of distinct materials, 3-D plotting can be utilized for all pasty biomaterials and therefore opens up many new options for the manufacturing of bi- or multiphasic scaffolds or even tissue engineering constructs, containing e. g. living cells. Conclusion3-D plotting is a rapid prototyping technology of growing importance which provides flexibility concerning choice of material and allows integration of sensitive biological components.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content