Objective To discuss the effect of three-dimensional (3D) printing individualized model and guide plate in bone tumor surgery. Methods Between October 2015 and December 2016, 3D printing individualized model and guide plate for making preoperative surgical planning and intraoperative treatment were used in 5 patients of bone tumor. All the patients were male, with a median age of 32 years (range, 9-58 years). There were 1 case of cystic echinococcosis at left pelvis and pathological fracture of the proximal femur; 1 case of left iliac bone osteoblastoma associated with aneurysmal bone cyst; 1 case of fibrous dysplasia of the left femur (sheep horn deformity) with pathological fracture; 1 case of metastatic carcinoma of right calcaneus (tumor staging was T2N0M0); and 1 case of Ewing sarcoma of left femur (tumor staging was T2N0M0). The disease duration ranged from 1 month to 10 years (mean, 2.25 years). Results The operation was completed successfully. The operation time was 2.6-7.5 hours (mean, 4.9 hours). The intraoperative blood loss was 200-2 500 mL (mean, 1 380 mL). The intraoperative fluoroscopy times was 1-6 times (mean, 3.8 times). There was no infection after operation, and the blood supply and nerve function were good. All the patients were followed up 3-16 months (mean, 5.4 months). No loosening or breaking of the internal fixator occurred. According to Enneking scoring system, the limb function score was 15-26 (mean, 21); and the results were excellent in 2 cases, good in 2 cases, and fair in 1 case. Conclusion 3D printing technology can make the implementation of the better preoperative planning and evaluation in bone tumor surgery, and it provides a new reference for individualized treatment in patients with bone tumor.
ObjectiveTo evaluate the clinical value of three-dimensional (3D) printing model in accurate and minimally invasive treatment of double outlet right ventricle (DORV).MethodsFrom August 2018 to August 2019, 35 patients (22 males and 13 females) with DORV aged from 5 months to 17 years were included in the study. Their mean weight was 21.35±8.48 kg. Ten patients who received operations guided by 3D printing model were allocated to a 3D printing model group, and the other 25 patients who received operations without guidance by 3D printing model were allocated to a non-3D printing model group. Preoperative transthoracic echocardiography and CT angiography were performed to observe the location and diameter of ventricular septal defect (VSD), and to confirm the relationship between VSD and double arteries.ResultsThe McGoon index of patients in the 3D printing model group was 1.91±0.70. There was no statistical difference in the size of VSD (13.20±4.57 mm vs. 13.40±5.04 mm, t=−0.612, P=0.555), diameter of the ascending aorta (17.10±2.92 mm vs. 16.90±3.51 mm, t=0.514, P=0.619) or diameter of pulmonary trunk (12.50±5.23 mm vs. 12.90±4.63 mm, t=−1.246, P=0.244) between CT and 3D printing model measurements. The Pearson correlation coefficients were 0.982, 0.943 and 0.975, respectively. The operation time, endotracheal intubation time, ICU stay time and hospital stay time in the 3D printing model group were all shorter than those in the non-3D printing model group (P<0.05).ConclusionThe relationship between VSD and aorta and pulmonary artery can be observed from a 3D perspective by 3D printing technology, which can guide the preoperative surgical plans, assist physicians to make reasonable and effective decisions, shorten intraoperative exploration time and operation time, and decrease the surgery-related risks.
ObjectiveTo explore the feasibility of lumbar puncture models based on 3D printing technology for training junior orthopaedic surgeons to find the optimal pedicle screw insertion points.MethodsMimics software was used to design 3D models of lumbar spine with the optimal channels and alternative channels. Then, the printed lumbar spine models, plasticine, and cloth were used to build lumbar puncture models. From January 2018 to June 2019, 43 orthopedic trainees performed simulated operations to search for the insertion points of pedicle screws base on the models. The operations were performed once a day for 10 consecutive days, and the differences in operation scores and operation durations of the trainees among the 10 days were compared.ResultsAll the trainees completed the surgical training operations successfully, and there were significant differences in the operation scores (13.05±2.45, 14.02±3.96, 17.58±3.46, 21.02±2.04, 23.40±4.08, 25.14±3.72, 27.26±6.09, 33.37±4.23, 35.00±4.15, 38.49±1.70; F=340.604, P<0.001) and operation durations [(22.51±4.28), (19.93±4.28), (18.05±2.89), (17.05±1.76), (16.98±1.97), (15.47±1.74), (13.51±1.42), (12.60±2.17), (12.44±1.71), (11.91±1.87) minutes; F=102.359, P<0.001] among the 10 days.ConclusionThe 3D models of lumbar puncture are feasible and repeatable, which can contribute to surgical training.
ObjectiveTo evaluate the effectiveness of three-dimensional (3D) printing assisted internal fixation for unstable pelvic fractures.MethodsThe clinical data of 28 patients with unstable pelvic fractures admitted between March 2015 and December 2017 were retrospectively analyzed. The patients were divided into two groups according to different surgical methods. Eighteen cases in the control group were treated with traditional anterior and posterior open reduction and internal fixation with plate; 10 cases in the observation group were treated with 3D printing technology to make pelvic models and assist in shaping the subcutaneous steel plates of the anterior ring. Sacroiliac screw navigation template was designed and printed to assist posterior ring sacroiliac screw fixation. There was no significant difference between the two groups in gender composition, age, cause of injury, fracture type, and time interval from injury to surgery (P>0.05). The operation time, intraoperative blood loss, intraoperative fluoroscopy times, incision length, waiting time for weight-bearing exercise, and fracture healing time were recorded and compared between the two groups. Majeed score was used to evaluate the function at last follow-up. At immediate after operation, the reduction was evaluated according to Matta imaging scoring criteria, and the success of sacroiliac joint screw implantation in the observation group was evaluated. The deviation of screw entry point and direction between postoperative screws and preoperative simulated screws were compared in the observation group.ResultsAll the operation was successfully completed, and all patients were followed up 6-18 months (mean, 14.4 months). In the control group, 1 case had wound infection and 2 cases had deep vein thrombosis. No serious complication such as important blood vessels, and nerve injury and pulmonary embolism occurred in other patients in the two groups. No screw pulling out or steel plate breaking occurred. The operation time, intraoperative blood loss, fluoroscopy times, incision length, and waiting time for weight-bearing exercise of the control group were significantly more than those of the observation group (P<0.05); there was no significant difference in fracture healing time between the two groups (t=0.12, P=0.90). There was no significant difference in reduction quality between the two groups at immediate after operation (Z=–1.05, P=0.30); Majeed score of the observation group was significantly better than that of the control group at last follow-up (Z=–2.42, P=0.02). The success rate of sacroiliac joint screw implantation in the observation group reached category Ⅰ. In the observation group, the deviation angle of the direction of the screw path between the postoperative screw and the preoperative simulated screw implant was (0.09±0.22)°, and the deviation values of the entry points on the X, Y, and Z axes were (0.13±0.63), (0.14±0.58), (0.15±0.53) mm, respectively. There was no significant difference when compared with those before the operation (all values were 0) (P>0.05).ConclusionComputer design combined with 3D printing technology to make personalized pelvic model and navigation template applied to unstable pelvic fractures, is helpful to accurately place sacroiliac screw, reduce the operation time, intraoperative blood loss, and the fluoroscopy times, has good waiting time for weight-bearing exercise and function, and it is an optional surgical treatment for unstable fractures.
Mitral valve disease is the most common cardiac valve disease. The main treatment of mitral valve disease is surgery or interventional therapy. However, as the anatomy of mitral valve is complicated, the operation is particularly difficult. As a result, it requires sophisticated experiences for surgeons. Three-dimensional (3D) printing technology can transform two-dimensional medical images into 3D solid models. So it can provide clear spatial anatomical information and offer safe and personalized treatment for the patients by simulating surgery process. This article reviews the applications of 3D printing technology in the treatment of mitral valve disease.
ObjectiveTo investigate the effects of three-dimensional (3D) printed Ti6Al4V-4Cu alloy on inflammation and osteogenic gene expression in mouse bone marrow mesenchymal stem cells (BMSCs) and mouse mononuclear macrophage line RAW264.7.MethodsTi6Al4V and Ti6Al4V-4Cu alloys were prepared by selective laser melting, and the extracts of the two materials were prepared according to the biological evaluation standard of medical devices. The effects of two kinds of extracts on the proliferation of mouse BMSCs and mouse RAW264.7 cells were detected by cell counting kit 8 method. After co-cultured with mouse BMSCs for 3 days, the expression of osteogenesis- related genes [collagen type Ⅰ (Col-Ⅰ), alkaline phosphatase (ALP), Runx family transcription factor 2 (Runx-2), osteoprotegerin (OPG), and osteopontin (OPN)] were detected by real-time fluorescence quantitative PCR. After co-cultured with mouse RAW264.7 cells for 1 day, the expressions of inflammation-related genes [interleukin 4 (IL-4) and nitric oxide synthase 2 (iNOS)] were detected by real-time fluorescence quantitative PCR, and the supernatants of the two groups were collected to detect the secretion of vascular endothelial growth factor a (VEGF-a) and bone morphogenetic protein 2 (BMP-2) by ELISA. The osteogenic conditioned medium were prepared with the supernatants of the two groups and co-cultured with BMSCs for 3 days. The expressions of osteogenesis-related genes (Col-Ⅰ, ALP, Runx-2, OPG, and OPN) were detected by real-time fluorescence quantitative PCR.ResultsCompared with Ti6Al4V alloy extract, Ti6Al4V-4Cu alloy extract had no obvious effect on the proliferation of BMSCs and RAW264.7 cells, but it could promote the expression of OPG mRNA in BMSCs, reduce the expression of iNOS mRNA in RAW264.7 cells, and promote the expression of IL-4 mRNA. It could also promote the secretions of VEGF-a and BMP-2 in RAW264.7 cells. Ti6Al4V-4Cu osteogenic conditioned medium could promote the expressions of Col-Ⅰ, ALP, Runx-2, OPG, and OPN mRNAs in BMSCs. The differences were all significant (P<0.05).Conclusion3D printed Ti6Al4V-4Cu alloy can promote RAW264.7 cells to secret VEGF-a and BMP-2 by releasing copper ions, thus promoting osteogenesis through bone immune regulation, which lays a theoretical foundation for the application of metal prosthesis.
ObjectiveTo evaluate the effectiveness of unstable pelvic fractures treated by cannulated screw internal fixation with the assistance of three-dimensional (3D) printing insertion template.MethodsThe clinical data of 10 patients who underwent surgical treatment for unstable pelvic fractures by cannulated screw internal fixation with the assistance of 3D printing insertion template between May 2015 and June 2016 were retrospectively analysed. There were 7 males and 3 females with an average age of 37.5 years (range, 20-58 years). The causes of injury included falling from height in 5 cases, crushing from heavy load in 1 case, and traffic accidents in 4 cases. The interval from injury to admission was 1-5 hours (mean, 3.1 hours). The fracture situation included 6 cases of sacral fracture, 1 case of right sacroiliac joint dislocation, and 3 cases of iliac bone fracture. There were 10 cases of superior and inferior pubic rami fracture, including 3 cases on the left side (2 cases of suprapubic fracture adjacent to symphysis pubis), 2 cases on the right side, and 5 cases on the bilateral. All fractures were classified according to the Tile system, there were 4 cases of type B2, 1 of type B3, 4 of type C1, and 1 of type C2. The radiological outcome was evaluated by Matta scale, and the positions of the iliosacral screw and superior pubic ramus screw were evaluated according to 3D reconstruction of CT postoperatively. The functional outcome was evaluated by Majeed function scale.ResultsThe average time of each screw implantation was 30 minutes, and the average blood loss per screw incision was 50 mL. The time of implantation of each sacroiliac screw was 24-96 seconds (mean, 62 seconds), and the time of implantation of each suprapubic screw was 42-80 seconds (mean, 63.2 seconds). The hospitalization duration was 17-90 days (mean, 43.7 days). All incisions healed by first intention. All patients were followed up 12-22 months (mean, 15.6 months). The radiological outcome was excellent in 8 cases and good in 2 cases according to Matta scale; and 3D reconstruction of CT demonstrated that all the 9 iliosacral screws were placed as type Ⅰ, and all the 13 suprapubic ramus screws were placed as grade 0 on the first postoperative day. No complication such as neurovascular injury, screw back out or rupture, or secondary fracture displacement was observed during the follow-up. At 6 months after operation, the X-ray films showed good fracture healing in all the 10 patients. The functional outcome was excellent in 9 cases and good in 1 case according to Majeed scale at 1 year after operation. One patient sustained Tile C2 pelvic disruption complicated with L5 nerve root injury achieved complete nervous functional recovery at last follow-up.ConclusionIt has advantages of precise screw insertion and lower risk of neurovascular injury to treat unstable pelvic fractures by cannulated screw internal fixation with the assistance of 3D printing insertion template, which can be a good alternative for the treatment of unstable pelvic fractures.
ObjectiveTo manufacture a polycaprolactone (PCL)/type Ⅰ collagen (COL Ⅰ) tissue engineered meniscus scaffold (hereinafter referred to as PCL/COL Ⅰ meniscus scaffold) by three-dimensional (3D) printing with low temperature deposition technique and to study its physicochemical properties.MethodsFirst, the 15% PCL/4% COLⅠ composite solution and 15% PCL simple solution were prepared. Then, 15% PCL/4% COL Ⅰmeniscus scaffold and 15% PCL meniscal scaffold were prepared by using 3D printing with low temperature deposition techniques. The morphology and microstructure of the scaffolds were observed by gross observation and scanning electron microscope. The compression modulus and tensile modulus of the scaffolds were measured by biomechanical test. The components of the scaffolds were analyzed by Fourier transform infrared spectroscopy (FTIR). The contact angle of the scaffold surface was measured. The meniscus cells of rabbits were cultured with the two scaffold extracts and scaffolds, respectively. After cultured, the cell proliferations were detected by cell counting kit 8 (CCK-8), and the normal cultured cells were used as controls. Cell adhesion and growth of scaffold-cell complex were observed by scanning electron microscope.ResultsAccording to the gross and scanning electron microscope observations, two scaffolds had orientated 3D microstructures and pores, but the surface of the PCL/COLⅠ meniscus scaffold was rougher than the PCL meniscus scaffold. Biomechanical analysis showed that the tensile modulus and compression modulus of the PCL/COL Ⅰ meniscus scaffold were not significantly different from those of the PCL meniscus scaffold (P>0.05). FTIR analysis results showed that COL Ⅰ and PCL were successful mixed in PCL/ COL Ⅰ meniscus scaffolds. The contact angle of PCL/COLⅠ meniscus scaffold [(83.19±7.49)°] was significantly lower than that of PCL meniscus scaffold [(111.13±5.70)°] (t=6.638, P=0.000). The results of the CCK-8 assay indicated that with time, the number of cells cultured in two scaffold extracts showed an increasing trend, and there was no significant difference when compared with the control group (P>0.05). Scanning electron microscope observation showed that the cells attached on the PCL/ COL Ⅰ meniscus scaffold more than that on the PCL scaffold.ConclusionPCL/COLⅠmeniscus scaffolds are prepared by 3D printing with low temperature deposition technique, which has excellent physicochemical properties without cytotoxicity. PCL/COLⅠmeniscus scaffold is expected to be used as the material for meniscus tissue engineering.
ObjectiveTo explore the effectiveness and advantage of three-dimensional (3D) printed navigation templates assisted Ludloff osteotomy in treatment of moderate and severe hallux valgus.MethodsBetween April 2013 and February 2015, 28 patients (28 feet) with moderate and severe hallux valgus who underwent Ludloff osteotomy were randomly divided into 2 groups (n=14). In group A, the patients were treated with Ludloff osteotomy assissted with a 3D printed navigation template. In group B, the patients were treated with traditional Ludloff osteotomy. There was no significant difference in gender, age, affected side, and clinical classification between 2 groups (P>0.05). The operation time and intraoperative blood loss were recorded. The ankle function of the foot at preoperation, immediate after operation, and last follow-up were assessed by the American Orthopedic Foot and Ankle Society (AOFAS) score. Besides, the X-ray film were taken to assess the hallux valgus angle (HVA), intermetatarsal angle (IMA), and the first metatarsal length shortening.ResultsAll patients were followed up 18-40 months (mean, 26.4 months). The operation time and intraoperative blood loss in group A were significantly less than those in group B (P<0.05). The HVA, IMA, and AOFAS scores in groups A and B at immediate after operaton and last follow-up were sinificantly improved when compared with preoperative values (P<0.05); but no significant difference was found between at immediate after operation and at last follow-up (P>0.05). No significant difference was found in HVA and IMA between group A and group B at difference time points (P>0.05). There were significant differences in AOFAS score and the first metatarsal length shortening at immediate after operation and at last follow-up between 2 groups (P<0.05). Except 1 case of metastatic metatarsalgia in group B, there was no other operative complications in both groups.Conclusion3D printed navigation template assisted Ludloff osteotomy can provide accurate preoperative planning and intraoperative osteotomy. It is an ideal method for moderate and severe hallux valgus.