Objective To evaluate the effectiveness of interference screw and flexor hallucis longus tendon as augmentation material in repair of chronic Achilles tendon rupture. Methods From October 2004 to June 2007, 32 patients (35 feet) with chronic Achilles tendon rupture were treated, including 21 males (22 feet) and 11 females (13 feet) and aging 32-85 years. The disease course was 4-132 days. There were 29 patients with hoofl ike movements history and 3 patients withoutobvious inducement. The result of Thompson test was positive in 31 cases (33 feet). The score was 56.09 ± 7.25 according to the American Orthopaedic Foot and Ankle Society ankle-hindfoot scoring system (AOFAS). MRI indicated that the gap of the chronic Achilles tendon rupture was 0.5-5.0 cm. Medial foot incision associated with medial heel incision or only medial heel incision was made to harvest flexor hallucis longus tendon. The tendon should be 3 cm longer than the end of the Achilles tendon, then fix the tendon to the calcaneus. Results Wound dehiscence occurred and wound healed after dressing change in 1 case; wound healed by first intention in other patients. Thirty-two patients were followed up for 12-32 months (mean 19.4 months). The AOFAS score was 94.22 ± 4.63, showing statistically significant difference when compared with that before operation (P lt; 0.01). The results were excellent in 28 cases, good in 3 cases and fair in 1 case. No sural nerve injury, posterior tibial nerve injury, plantar painful scar, medial plantar nerve injury and lateral plantar nerve injury occurred. Conclusion Flexor hallucis longus tendon transfer offers a desirable outcome in operative recovery, tendon fixation and compl ications.
Objective To investigate the appl ication and cl inical result of flap in the repair of wounds with Achilles tendon exposure. Methods Between May 2006 and May 2010, 21 patients with Achilles tendon skin defects were treated with microsurgical reconstruction. There were 15 males and 6 females, aged 7-63 years with a median of 34 years. The defect causesincluded sport injury in 4 cases, wheel twist injury in 7 cases, crush injury in 5 cases, chronic ulcer in 3 cases, and Achilles tendon lengthening in 2 cases. The areas of wounds with Achilles tendon exposure ranged from 2 cm × 2 cm to 10 cm × 8 cm. After debridement, wounds were repaired with the medial malleolus fasciocutaneous flap (5 cases), sural neurocutaneous vascular flap (8 cases), foot lateral flap (2 cases), foot medial flap (2 cases), and peroneal artery perforator flap (4 cases). The size of the flaps ranged from 3 cm × 3 cm to 12 cm × 10 cm. The donor sites were either sutured directly or covered with intermediate spl it thickness skin grafts. The Achilles tendon rupture was sutured directly (2 cases) or reconstructed by the way of Abraham (2 cases). Results All flaps survived and wounds healed by first intention except 2 flaps with edge necrosis. Twenty-one patients were followed up 6-18 months (mean, 12 months). The flaps had good appearance and texture without abrasion or ulceration. The walking pattern was normal, and the two point discrimination was 10-20 mm with an average of 14 mm. The Ameritan Orthopedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale assessment revealed that 10 patients had an excellent result, 7 had a good result, 3 had a fair result, and 1 had a poor result with an excellent and good rate of 81.0%. Fourteen cases could l ift the heels with power; 5 cases could l ift the heels without power sl ightly; and 2 cases could not l ift the heels. Conclusion The wounds with Achilles tendon exposure should be repaired as soon as possible by appropriate flap according to the condition of wound.
OBJECTIVE To investigate the clinical result and influence factors of prognosis after repair of ruptured Achilles tendon with operative treatment. METHODS From 1961 to 1994, 62 cases with ruptured Achilles tendon were treated operatively. Among them, "8"-shaped suture was used in 8 cases, aponeurosis flap repair in 30 cases, transfer repair of tendon of peroneus longus muscle in 2 cases, reverse "V-Y" shaped tendon plastic operation in 10 cases, and mattress suture of opposite ends in 12 cases. RESULTS Followed up 3 to 33 years, there was excellent in 40 cases, better in 13 cases, moderate in 6 cases, poor in 3 cases, 85.5% in excellent rate. Postoperative infection and re-rupture were occurred in 6 cases respectively. CONCLUSION Different operative procedures are adopted to achieve better long-term clinical result according to the injury types.
Objective To evaluate the biomechanical property of tendons repaired with the modified Kessler suture combined with " 8” suture, and to provide evidence for the clinical application of this suture methods in repairing acute Achilles tendon rupture. Methods Forty frozen flexor digitorum longus tendons from fresh pork hind leg were randomly assigned into 4 groups, 10 specimens each group. In group A, the tendons were dissected transversely at the midpoint to forming the model of tendon with transversely cutting injury. The tendons in groups B, C, and D were dissected transversely at the midpoint, then a 2 cm segment of tendon from the incision in each side was dissected longitudinally with 1 mm internal to forming " frayed tendon” model. All the tendons were sutured with2-0 non-absorbable suture material with different suturing methods: in group A, the tendons with transversely cutting injury model with Krackow suture, and in the groups B, C, and D with Krackow suture, Kessler suture, and the modified Kessler suture combined with " 8” suture separately. All repaired tendons were fixed onto the biomechanical testing machine. The length, width, and thickness of each side and midpoint of the tendons were recorded, and the cross-sectional area was calculated. The tendons were stretched at a speed of 15 mm/minutes until failure (suture avulsion or rupture). The computer automatically recorded the maximum load, stress, strain, the failure displacement, and the stiffness. These biomechanical parameters of tendons in different groups were analyzed and compared. Results There was no significant difference in the length and cross-sectional area of each tendon among 4 groups (F=0.245, P=0.863; F=0.094, P=0.963). Two tendons in group B, 1 in group C, and 1 in group D were excluded because of tendon slipping; all tendons in group A and 8 tendons in group B failured due to suture rupture, 9 tendons in group C due to suture slipping, and 9 tendons in group D due to 3 sutures slipping from tendon tissue together. The maximum load, the maximum stress, the maximum strain, the failure displacement, and the stiffness of the tendons between groups A and B showed no significant difference (P>0.05). The maximum load, the maximum stress, and the stiffness of the tendons in group D were larger than those in both groups B and C (P<0.05), but no significant difference was found in the maximum strain and the failure displacement between groups B, C, and D (P>0.05). The maximum load, the maximum stress, the failure displacement, and the stiffness of the tendons in group B were larger than those in group C (P<0.05), but the difference of maximum strain between groups B and C was not significant (P>0.05). Conclusion The modified Kessler suture combined with " 8” suture can provide better biomechanical property of the repaired tendon compared with other suture approaches.
Objective Platelet-rich plasma (PRP) can promote wound heal ing. To observe the effect of PRP injection on the early heal ing of rat’s Achilles tendon rupture so as to provide the experimental basis for cl inical practice. Methods Forty-six Sprague Dawley rats were included in this experiment, female or male and weighing 190-240 g. PRP and platelet-poor plasma (PPP) were prepared from the heart arterial blood of 10 rats; other 36 rats were made the models of Achilles tendon rupture, and were randomly divided into 3 groups (control group, PPP group, and PRP group), 12 rats for each group. In PPP and PRP groups, PPP and PRP of 100 μL were injected around the tendons once a week, respectively; in the control group, nothing was injected. The tendon tissue sample was harvested at 1, 2, 3, and 4 weeks after operation for morphology, histology, and immunohistochemistry observations. The content of collagen type I fibers also was measured. Specimens of each group were obtained for biomechanical test at 4 weeks. Results All the animals survived till the end of the experiment. Tendon edema gradually decreased and sliding improved with time. The tendon adhesion increased steadily from 1 week to 3 weeks postoperatively, and it was relieved at 4 weeks in 3 groups. There was no significant ifference in the grading of tendon adhesion among 3 groups at 1 week and at 4 weeks (P gt; 0.05), respectively. The inflammatory cell infiltration, angiogenesis, and collagen fibers were more in PRP group than in PPP group and control group at 1 week; with time, inflammatory cell infiltration and angiogenesis gradually decreased. Positive staining of collagen type I fibers was observed at 1-4 weeks postoperatively in 3 groups. The positive density of collagen type I fibers in group PRP was significantly higher than that in control group and PPP group at 1, 2, and 3 weeks (P lt; 0.05), but no significant difference was found among 3 groups at 4 weeks (P gt; 0.05). The biomechanical tests showed that there was no significant difference in the maximal gl iding excursion among 3 groups at 4 weeks postoperatively (P gt; 0.05); the elasticity modulus and the ultimate tensile strength of PRP group were significantly higher than those of control group and PPP group at 4 weeks (P lt; 0.05). Conclusion PRP injection can improve the healing of Achilles tendon in early repair of rat’s Achilles tendon rupture.
Old achilles tendon rupture accompanied by skin defect was a common amp; annoying problem in clinic. From June, 1985 to June, 1996, 18 cases with this kind of injury were treated by one stage repair of the tendon and skin defect. In this series, there were 15 males and 3 females, the length of tendon defects were ranged from 4 cm-6.1 cm, and the area of skin defect were ranged from 5.9 cm x 3 cm to 8.2 cm x 6 cm. The procedures were: (1) to debridement of the wound thoroughly; (2) to repair the achilles tendon; (3) to repair the skin defect with kinds of pedicle flap; (4) immobilization of ankle and knee for 6 weeks. No infection was occured after the operation. The flaps survived in all cases. After follow-up for one year in 15 cases, 12 patients went back to their work. It was concluded that (1) achilles tendon rupture should be treated carefully and properly during the emergency operation; (2) different methods should be selected according to the length of tendon defect; (3) because of its high survival and retained sensation after operation, the flap pedicled with posterior lateral malleolar artery is the best choice for repairing the skin defect.
OBJECTIVE: To review the anatomy, etiology, therapy strategy of Achilles tendon injury and its related advances in recent years. METHODS: The related articles in recent years were extensively reviewed. RESULTS: There still were many arguments about the effect of corticosteroid on the treatment of tendon disease. Fluoqmnolone was found to be related with Achilles tendon injury. Acute rupture of Achilles tendon could be treated with open operation, percutaneous repair, or conservative therapy. For old rupture, many kinds of operations could be selected. CONCLUSION: The growth factors found in recent years provide us with new prospect for future treatment of Achilles tendon injury.
Objective To investigate the management of the soft tissue defect after the Achilles tendon repair. Methods From April 1996 to April 2006, 24 patients(17 males, 7 females; aged 16-59 years), who suffered from postoperative Achilles tendon exposure caused by local soft-tissue necrosis after the Achilles tendon repair, were treated and evaluated. Of the 24patients, 8 had an original open injury (machinecrush injury in 2 patients, heavy-object press injury in 3, motorcycle wheel crush injury in 3) and 16 patients had a closed injury (sports injury). In their treatment, the transferof the sural neurovascular flap was performed on 8 patients and the transfer ofthe saphenous neurovascular flap was performed on 3 patients. The secondary Achilles tendon repair was performed on 13 patients before the neurovascular flap transfer was performed. The time between the injury and the operation was 9-76 days, and the time between the Achilles tendon expousure and the operation was 3-65 days. Results All the flaps survived and the Achilles tendon exposure was well covered by the flaps of good texture. Eighteen patients followed up for 6 months to 24 months had no flap complication, and the two point discrimination of the flaps was 12-20 mm. The AOFASAnkleHindfoot Scale assessment revealed that 8 patients had an excellent result, 6 had a good result, 3 had a fair result, and just 1 had a poor result, with theexcellent and good results accounting for 77.8%. Sixteen patients (89%) were able toperform a tip-toe stance on their operative sides, and only 3 of them complained a loss of plantarflexion strength. However, 2 patients still could not perform the tip-toe stance. Conclusion The Achilles tendon repair, ifnot well performed, can result in the local soft-tissue necrosis and the subsequent Achilles tendon exposure. If those complications occur, the neurovascular flap transfer should be performed as soon as possible; if necessary, the secondary Achilles tendon repair should be performed, too.
Objective To investigate the preparation of decellularized Achilles tendons and the effect of co-culture of human fibroblasts on the scaffold so as to provide a scaffold for the tissue engineered ligament reconstruction. Methods Achilles tendons of both hind limbs were harvested from 10 male New Zealand white rabbits (5-month-old; weighing, 4-5 kg). The Achilles tendons were decellularized using trypsin, Triton X-100, and sodium dodecyl sulfate (SDS), and then gross observation, histological examination, and scanning electron microscope (SEM) observation were performed; the human fibroblasts were seeded on the decellularized Achilles tendon, and then cytocompatibility was tested using the cell counting kit 8 method at 1, 3, 5, 7, and 9 days after co-culture. At 4 weeks after co-culture, SEM, HE staining, and biomechanical test were performed for observing cell-scaffold composite, and a comparison was made with before and after decellularization. ResultsAfter decellularization, the tendons had integrated aponeurosis and enlarged volume with soft texture and good toughness; there was no loose connective tissue and tendon cells between tendon bundles, the collagen fibers arranged loosely with three-dimensional network structure and more pores between tendon bundles; and it had good cytocompatibility. At 4 weeks after co-culture, cells migrated into the pores, and three-dimensional network structure disappeared. By biomechanical test, the tensile strength and Young’s elastic modulus of the decellularized Achilles tendon group decreased significantly when compared with normal Achilles tendons group and cell-scaffold composite group (P lt; 0.05), but no significant difference was found between normal Achilles tendons group and cell-scaffold composite group (P gt; 0.05). There was no significant difference in elongation at break among 3 groups (P gt; 0.05). ConclusionThe decellularized Achilles tendon is biocompatible to fibroblasts. It is suit for the scaffold for tissue engineered ligament reconstruction.
Objective To evaluate the positional relationship between protective channel and sural nerve while treating acute Achilles tendon rupture with channel assisted minimally invasive repair (CAMIR) technique based on anatomical observations of cadaver specimens. Methods Twelve adult cadaveric lower limb specimens (6 left, 6 right) were utilized. A CAMIR device was implanted at a distance of 4 cm from the proximal end of the specimen to the Achilles tendon insertion. The skin was incised along the tendon’s medial side, the sural nerve was dissected, and the positional relationship with the protective channel was observed. The distance from the sural nerve-Achilles tendon intersection to the calcaneal insertion, the vertical distance between protective channel and the calcaneal insertion, and the horizontal distance between the sural nerve and protective channel were measured by using vernier caliper. Results Anatomical examination demonstrated a variable positional relationship between the sural nerve and protective channel, with the sural nerve positioned above (8 specimens) or below (4 specimens) the protective channel. The distance from the sural nerve-Achilles tendon intersection to the calcaneal insertion was (105.67±14.94) mm, the vertical distance between protective channel and the calcaneal insertion was (93.20±9.57) mm, and the horizontal distance between the sural nerve and protective channel was (0.31±0.14) mm. Conclusion The use of CAMIR technique for the treatment of acute Achilles tendon rupture can effectively avoid iatrogenic injury to the sural nerve.