ObjectiveTo evaluate the macular visual function of patients with myopic choroidal neovascularization (MCNV) before and after intravitreal injection of conbercept.MethodsA prospective, uncontrolled and non-randomized study. From April 2017 to April 2018, 21 eyes of 21 patients diagnosed as MCNV in Shanxi Eye Hospital and treated with intravitreal injection of conbercept were included in this study. There were 9 males (9 eyes, 42.86%) and 12 females (12 eyes, 57.14%), with the mean age of 35.1±13.2 years. The mean diopter was −11.30±2.35 D and the mean axial length was 28.93±5.68 mm. All patients were treated with intravitreal injection of conbercept 0.05 ml (1+PRN). Regular follow-up was performed before and after treatment, and BCVA and MAIA micro-field examination were performed at each follow-up. BCVA, macular integrity index (MI), mean sensitivity (MS) and fixation status changes before and after treatment were comparatively analyzed. The fixation status was divided into three types: stable fixation, relatively unstable fixation, and unstable fixation. The paired-sample t-test was used to compare BCVA, MI and MS before and after treatment. The x2 test was used to compare the fixation status before and after treatment.ResultsDuring the observation period, the average number of injections was 3.5. The logMAR BCVA of the eyes before treatment and at 1, 3, and 6 months after treatment were 0.87±0.32, 0.68±0.23, 0.52±0.17, and 0.61±0.57, respectively; MI were 89.38±21.34, 88.87±17.91, 70.59±30.02, and 86.76±15.09, respectively; MS were 15.32±7.19, 21.35±8.89, 23.98±11.12, 22.32±9.04 dB, respectively. Compared with before treatment, BCVA (t=15.32, 18.65, 17.38; P<0.01) and MS (t=4.08, 3.50, 4.26; P<0.01) were significantly increased in the eyes 1, 3, and 6 months after treatment. There was no significant difference in the MI of the eyes before treatment and at 1, 3, and 6 months after treatment (t=0.60, 2.42, 2.58; P>0.05). Before treatment and at 1, 3, and 6 months after treatment, the proportion of stable fixation were 28.57%, 38.10%, 38.10%, 33.33%;the proportion of relatively unstable fixation were 47.62%, 47.62%, 52.38%, 57.14% and the proportion of unstable fixation were 23.81%, 14.28%, 9.52%, 9.52%, respectively. The proportion of stable fixation and relatively unstable fixation at 1, 3 and 6 months after treatment were higher than that before treatment, but the difference was not statistically significant (x2=1.82, 1.24, 1.69; P>0.05).ConclusionBCVA and MS are significantly increased in patients with MCNV after intravitreal injection of conbercept.
ObjectiveTo observe the efficacy of different administration of conbercept on choroidal neovasculature (CNV) in patients with pathological myopia (PM).MethodsA retrospective case-control study. From June 2012 to June 2017, 57 patients (61 eyes) with PM-CNV diagnosed in the Ophthalmology Department of General Hospital of Central Theater Command were included in this study. All patients underwent BCVA, intraocular pressure, refractive index, slit lamp microscope, FFA, OCT examination and axial length (AL) measurement. An international standard vision chart was used in the BCVA test, which was converted to logMAR vision. According to the initial treatment plan, the patients were divided into 1+PRN treatment group (group A) and 3+PRN treatment group (group B), with 27 patients (31 eyes) and 30 patients (30 eyes), respectively. There was no significantly statistical difference in baseline data between the two groups (P>0.05). The eyes was injected with 10 mg/ml of conbercept 0.05 ml (including conbercept 0.5 mg). After completion of initial treatment, on-demand treatment was performed according to repeated treatment standards. The average follow-up time was 30.8 months. The time point for curative effect determination was 24 months after treatment. The frequency and recurrence rate of vitreous cavity injections in the two groups of patients and the changes of BCVA, central macular thickness (CMT), diopter and AL were compared and observed. Continuous variables were compared between groups by independent sample t test. Categorical variables were compared by χ2 test. logMAR BCVA and injection frequency were compared by Wilcoxon rank test. Comparison of CMT before and after treatment was performed by paired t test.ResultsAfter 24 months, the number of intravitreal injections in group A and group B were 3.94±1.88 and 4.83±1.72, respectively, with statistically significant difference (Z=-2.182, P=0.029). After completion of initial treatment, the number of retreatments in group A and group B were 2.94±1.88 and 1.83±1.72, respectively, with significantly statistical different (Z=-2.330, P=0.020). The CNV recurrence rates were 38.71% and 13.33%, respectively, with statistically significant difference (χ2=5.074, P=0.024). Compared with prior treatment, the average BCVA at 1, 3, 6, 12, and 24 months after treatment significantly increased in group A and B (Group A: Z=5.634, 5.367, 5.532, 6.344, 6.135l; P<0.05. Group B: Z=5.809, 5.090, 5.341, 5.939, 8.103; P<0.05). At 1, 3, 6, and 12 months after treatment, there was no statistically significant difference in the average BCVA of the two groups (Z=-0.966, -0.932, -0.523, -1.759; P=0.334, 0.351, 0.601,0.079); the difference was statistically significant at 24 months (Z=-2.525, P=0.012). Compared with CMT before treatment, the difference in the average CMT reduction of the eyes in groups A and B was statistically significant at 1, 3, 6, 12, and 24 months (Group A: t=4.691, 2.624, 2.121, 1.921, 2.237; P<0.05. Group B: t=4.947, 4.554, 5.290, 5.567, 5.314; P<0.05); the average CMT comparison between the two groups was not statistically significant (P=0.457, 0.871, 0.505, 0.333, 0.798). During the follow-up period, there were no ocular complications and systemic adverse reactions.ConclusionsDifferent administration methods for the treatment of PM-CNV by intravitreal injection of conbercept are safe and effective, which can effectively improve BCVA and reduce CMT. Total injection of 3+PRN is more than 1+PRN. However, the injections of retreatment and CNV recurrence rate is lower, and the final follow-up vision is better.
Objective To compare the features of OCT angiography (OCTA) between neovascular age-related macular degeneration (nAMD) and myopic choroidal neovascularization (mCNV) patients before and after intravitreal anti-VEGF treatment. Methods A prospective cohort study. Twenty-nine patients (37 eyes) with nAMD (19 males and 10 females, aged 68.20±8.76) and 31 patients (34 eyes) with mCNV (9 males and 22 females, aged 43.10±11.80, with the mean diopter of −9.71±1.20 D) from Department of Ophthalmology, West China Hospital of Sichuan University during May and December 2017 were included in this study. Ranibizumab or Conbercept (0.5 mg/0.05 ml) was intravitreally injected in all eyes. The patients were follow-up for 3−6 months. The OCTA was conducted before treatment and 1 day, 1 week, 1 month and 3−6 months after treatment. In order to ensure that the scanning position was the same, the tracking mode was adopted for each scanning. According to the OCTA images, the lesion area, parafoveal superficial vessel density and perfusion area were measured and analyzed contrastively between nAMD and mCNV patients. Results The mean lesion area before and 1 month after treatment in nAMD patients were 0.38±1.87 mm2 and 0.06±0.12 mm2, while in mCNV patients, those were 0.26±1.06 mm2 and 0.03±0.05 mm2, respectively. There were statistically significant differences (Z=4.181, 4.475; P<0.001) in CNV lesion area before and 1 month after treatment between nAMD and mCNV patients. Compared with those before treatment, the absolute change (Z=1.853, P=0.064) and the percentage changes (t=2.685, P=0.010) of CNV lesion area 1 month after treatment in nAMD and mCNV patients show a statistical meaning. There were significantly decreases in both parafoveal superficial vessel density (F=8.997, P=0.003) and perfusion area (F=7.887, P=0.015) 3 months after treatment in nAMD patients, while decreases in parafoveal superficial vessel density (F=11.142, P=0.004) and perfusion area (F=7.662, P=0.013) could be detected 1 day after treatment in mCNV patients, before rising 1 month after treatment. Conclusions There are significantly differences in lesion area before and after the treatment of intravitreal anti-VEGF between nAMD and mCNV patients by OCTA examination. Moreover, the changes of both parafoveal superficial vessel density and perfusion area after anti-VEGF treatment are statistically different in two groups.
ObjectiveTo observe the effect of preoperative intravitreal ranibizumab injection (IVR) on the operation duration of vitrectomy and postoperative vision for the treatment of proliferative diabetic retinopathy (PDR). MethodsA prospective study was carried out with the 90 PDR patients (90 eyes) who underwent vitrectomy. The 90 patients(90 eyes)were assigned to the vitrectomy only group(43 eyes) and the IVR combined with vitrectomy group (47 eyes). The IVR was performed 5-13 days prior to vitrectomy in the IVR combined with vitrectomy group. There were 15 eyes with fibrous proliferation PDR (FPDR), 16 eyes with advanced PDR (APDR) without involving the macular and 16 eyes with APDR involving the macular in the vitrectomy only group. There were 14 eyes with FPDR, 15 eyes with APDR without involving the macular and 14 eyes with APDR involving the macular patients in the IVR combined with vitrectomy group. All the eyes in the two groups were regularly operated by the same doctor to complete the vitrectomy. The start and end time of vitrectomy were recorded. The average follow-up time was 10 months. The changes of best corrected visual acuity (BCVA) before and 1, 3 and 6 months after surgery were compared between the two groups. ResultsThe duration of operation of the FPDR type (t=-8.300) and the APDR involving the macular type (t=-2.418) in the IVR combined with vitrectomy group was shorter than vitrectomy only group (P < 0.05). The comparison of duration of operation of the APDR without involving the macular type in the two groups has no statistically significant difference (t=-1.685, P > 0.05). At 1 month after surgery, the comparison of BCVA of the IVR combined vitrectomy group and the vitrectomy only group in APDR involving the macular type has no statistically significant difference (t=0.126, P > 0.05). At 3, 6 months after surgery, the BCVA of the IVR combined vitrectomy group in APDR involving the macular type was significantly better than the BCVA of the vitrectomy only group (t=8.014, 7.808; P < 0.05). At 1, 3, and 6 months after surgery, the BCVA of the IVR combined vitrectomy group in FPDR type (t=3.809, 1.831, 0.600) and APDR without involving the macular type (t=0.003, 1.092, 3.931) compared with pre-treatment, the difference were not statistically significant (P > 0.05); the BCVA in APDR without involving the macular type compared with pre-treatment, the difference was distinctly statistically significant (t=2.940, 4.162, 6.446; P < 0.05); the BCVA in APDR involving the macular type (t=0.953, 1.682, 1.835) compared with pre-treatment, the difference were not statistically significant (P > 0.05). ConclusionPreoperative IVR of PDR can shorten the operation duration and improve the BCVA of APDR involving the macular type.
To observe the efficacy of intravitreal injection of conbercept (IVC) combined with panretinal laser photocoagulation (PRP) in the treatment of diabetic retinopathy (DR) combined with stage I and II neovascular glaucoma (NVG).MethodsA clinical case-control study. From October 2013 to March 2019, 50 eyes (50 patients) with DR and stage Ⅰ to Ⅱ NVG diagnosed in the Department of Ophthalmology, Peoples's Hospital of Xianghe were were included in the study. There were 27 eyes (27 males) and 23 eyes (23 females); all patients were monocular with the average age of 53.5±7.13 years old. Stage Ⅰ and Ⅱ NVG were 11 and 39 eyes, respectively. All patients underwent BCVA, intraocular pressure, and fundus angiography. The BCVA examination adopted the international standard visual acuity chart, which was converted to logMAR BCVA visual acuity in statistics. The patients were divided into the Conbercept+laser therapy (combination therapy) group and the laser therapy group by random number table, with 25 eyes. The age of the two groups of patients (t=0.058), gender composition ratio (χ2=0.081), logMAR BCVA (t=0.294), intraocular pressure (t=-0.070), the number of eyes with different grades of angle and iris neovascularization(χ2=1.683, 0.854)were compared, the difference was not statistically significant (P>0.05). The changes of BCVA, intraocular pressure, iris neovascularization, and angular neovascularization were compared and observed between the two groups one week after the completion of PRP treatment, 1, 3, 6, and 9 months. Independent sample t test was used for continuous variables. Between the combination treatment group and the laser treatment group, at different time points within the two groups and the interaction of the two factors, a single-factor repeated analysis of variance was used.ResultsCompared with the results before treatment, the combined treatment group and laser treatment group had statistically significant differences in the number of angle and iris neovascularization, intraocular pressure and logMAR BCVA at different times after treatment in the combined treatment group and laser treatment group (F=124.211, 65.153, 69.249, 26.848; P<0.001). After treatment, the combined treatment group was better than the laser treatment group in terms of the regression of eye angle and iris neovascularization, intraocular pressure and logMAR BCVA, and the difference was statistically significant (F=47.543, 25.051, 12.265, 9.994; P=0.001, 0.001, 0.001, 0.003). At different times after treatment, compared with the laser treatment group, the number of neovascularization in the iris and angle of the eye in the combined treatment group was less, the intraocular pressure was significantly decreased, and the BCVA was increased. The difference was statistically significant (P<0.05).ConclusionThe efficacy of Kang IVC combined with PRP in the treatment of DR with stage Ⅰ and Ⅱ NVG is better than that of PRP alone.
ObjectiveTo evaluate the effectiveness and complications associated with the use of ranibizumab in the treatment of ZoneⅠand ZoneⅡretinopathy of prematurity (ROP). MethodsData from patients of ROP who had received intravitreal ranibizumab (IVR) injections in Peking University People's Hospital for the treatment of ROP from July 2012 to December 2013 were collected. In total, 151 eyes from 85 patients (56 male and 29 female) were analyzed. The mean birth weight was (1438.6±334.5) g (range:790-2280 g), mean gestational age was (30.1±2.0) weeks (range:25-37 weeks), mean age at the time of intervention was (37.0±6.2) gestational weeks (range:32-45 weeks), mean follow-up was (4.9±3.3) months (range:1.4-20.8 months). The main outcome measures were the regression of ROP and the complications that were associated with the IVR injections. ResultsAfter receiving IVR injections, 120 eyes (79.5%) exhibited ROP regression after single injection. Twenty-six eyes (17.2%) required additional laser treatment for ROP regression after the absence of a positive response to the IVR injections. Five eyes (3%) progressed to stage 4 ROP and required vitrectomy to reattach the retinas. Fifty of 120 eyes which were regressed after single IVR had recurrence of ROP and need additional laser or additional IVR. All of the eyes (100.0%) had attached retinas after the various treatments that they received. No notable systemic complications related to the IVR injections were observed. ConclusionsIVR injection seems to be an effective and well-tolerated method to treat ZoneⅠand ZoneⅡROP. Recurrence of ROP is common and long-term follow up may be needed.
Objective To study and compare the clinical efficacy between intravitreal conbercept injection and (or) macular grid pattern photocoagulation in treating macular edema secondary to non-ischemic branch retinal vein occlusion (BRVO). Methods Ninety eyes of 90 patients diagnosed as macular edema secondary to non-ischemic BRVO were enrolled in this study. Forty-eight patients (48 eyes) were male and 42 patients (42 eyes) were female. The average age was (51.25±12.24) years and the course was 5–17 days. All patients were given best corrected visual acuity (BCVA), intraocular pressure, slit lamp with preset lens, fluorescence fundus angiography (FFA) and optic coherent tomography (OCT) examination. The patients were divided into conbercept and laser group (group Ⅰ), laser group (group Ⅱ) and conbercept group (group Ⅲ), with 30 eyes in each group. The BCVA and central macular thickness (CMT) in the three groups at baseline were statistically no difference (F=0.072, 0.286;P=0.930, 0.752). Patients in group Ⅰ received intravitreal injection of 0.05 ml of 10.00 mg/ml conbercept solution (conbercept 0.5 mg), and macular grid pattern photocoagulation 3 days later. Group Ⅱ patients were given macular grid pattern photocoagulation. Times of injection between group Ⅰ and Ⅲ, laser energy between group Ⅰ and Ⅱ, changes of BCVA and CMT among 3 groups at 1 week, 1 month, 3 months and 6 months after treatment were compared. Results Patients in group Ⅰ and Ⅲ had received conbercept injections (1.20±0.41) and (2.23±1.04) times respectively, and 6 eyes (group Ⅰ) and 22 eyes (group Ⅲ) received 2-4 times re-injections. The difference of injection times between two groups was significant (P<0.001). Patients in group Ⅱ had received photocoagulation (1.43±0.63) times, 9 eyes had received twice photocoagulation and 2 eyes had received 3 times of photocoagulation. The average laser energy was (96.05±2.34) μV in group Ⅰ and (117.41±6.85) μV in group Ⅱ, the difference was statistical significant (P=0.003). BCVA improved in all three groups at last follow-up. However, the final visual acuity in group Ⅰ and group Ⅲ were better than in group Ⅱ (t=4.607, –4.603;P<0.001) and there is no statistical significant difference between group Ⅲ and group Ⅰ (t=–0.802,P=0.429). The mean CMT reduced in all three groups after treating for 1 week and 1 month, comparing that before treatment (t=–11.855, –10.620, –10.254;P<0.001). There was no statistical difference of CMT between group Ⅰand Ⅲ at each follow up (t=0.404, 1.723, –1.819, –1.755;P=0.689, 0.096, 0.079, 0.900). CMT reduction in group Ⅰ was more than that in group Ⅱ at 1 week and 1 month after treatments (t=–4.621, –3.230;P<0.001, 0.003). The CMT in group Ⅲ at 3 month after treatment had increased slightly comparing that at 1 month, but the difference was not statistically significant (t=1.995,P=0.056). All patients had no treatment-related complications, such as endophthalmitis, rubeosis iridis and retinal detachment. Conclusions Intravitreal conbercept injection combined with macular grid pattern photocoagulation is better than macular grid pattern photocoagulation alone in treating macular edema secondary to non-ischemic BRVO. Combined therapy also reduced injection times comparing to treatment using conbercept injection without laser photocoagulation.
ObjectiveTo observe the clinical effect of prolonged photodynamic therapy (PDT) irradiation time combined with intravitreal injection of ranibizumab in the treatment of circumscribed choroidal hemangioma (CCH).MethodsA retrospective clinical study. From March 2012 to March 2018, 51 eyes of 51 patients diagnosed in Shenzhen Eye Hospital were included in the study. Among the patients, the tumor of 36 eyes were located in macular area, of 15 eyes were located outside macular area (near center or around optic disc). All patients underwent BCVA, color fundus photography, FFA, ocular B-scan ultrasonography and OCT examinations. The BCVA examination was performed using the international standard visual acuity chart, which was converted into logMAR visual acuity. OCT showed 48 eyes with macular serous retinal detachment. of 36 eyes with tumor located in macular area, the logMAR BCVA was 0.05±0.05, the tumor thickness was 4.5±2.2 mm, the diameter of tumor was 9.7±3.6 mm. Of 15 eyes with tumor located outside macular area, the logMAR BCVA was 0.32±0.15, the tumor thickness was 3.8±1.4 mm, the diameter of tumor was 7.7±1.9 mm. PDT was performed for all eyes with the irradiation time of 123 s. After 48 h, all patients received intravitreal injections of 0.5 mg ranibizumab (0.05 ml). At 1, 3 and 6 months after treatment, the same equipment and methods before treatment were used for related examination. BCVA, subretinal effusion (SRF), tumor leakage and size changes were observed. BCVA, tumor thickness and diameter before and after treatment were compared by t test.ResultsAt 6 months after treatment, the tumor was becoming smaller without scar formation. FFA showed that the blood vessels in the tumor were sparse compared with those before treatment, and the fluorescence leakage domain was reduced. OCT showed 43 eyes of macular serous detachment were treated after the combined treatment. The logMAR BCVA were 0.16±0.15 and 0.55±0.21 of the eyes with tumor located in or outside macular area, respectively. The difference of logMAR BCVA between before and after treatment was significant (t=-2.511, -2.676; P=0.036, 0.040). Both the tumor thickness (t=3.416, 3.055; P=0.011, 0.028) and diameter (t=4.385, 4.171; P=0.002, 0.009) of CCH patients were significantly reduced compared with that before treatment.ConclusionThe tumor of CCH can be reduced by prolonged PDT irradiation time combined with intravitreal injection of ranibizumab.
ObjectiveTo assess the efficacy and safety of intravitreal aflibercept injection (IAI) compared with photodynamic therapy (PDT) in the treatment of Chinese patients with predominantly classic subfoveal choroidal neovascularization (CNV) lesions secondary to neovascular age-related macular degeneration (nAMD).MethodsA randomized, double-blind, multi-center phase-3 clinical trial lasting for 52 weeks (from December 2011 to August 2014). Subjects were randomized in a 3:1 ratio to either IAI group or PDT-to-IAI group. Subjects in the IAI group received 2 mg IAI at baseline and at week 4, 8, 16, 24, 32, 40, 48, with sham injection at week 28, 36. Subjects in the PDT-to-IAI group were forced to receive PDT once at baseline and more time at week 12, 24 if PDT retreatment conditions were met. Sham injections were given in PDT-to-IAI group at baseline and at week 4, 8, 16 and 24, followed by 2 mg IAI at week 28, 32, 36, 40, 48. The primary outcome of efficacy were the change in mean Best Corrected Visual Acuity (BCVA) from baseline to week 28, and that of week 52. Safety evaluation included the percentage of subjects who suffered treatment emergent adverse events (TEAEs).ResultsAmong the 304 subjects enrolled, there were 228 and 76 cases in IAI group and PDT-to-IAI group respectively. At week 28, the changes of mean BCVA in IAI group, PDT-to-IAI group compared to baseline were +14.0, +3.9 letters, respectively. At week 52, the changes of mean BCVA in two groups were +15.2, +8.9 letters respectively with the difference of +6.2 letters (95%CI 2.6−9.9, P=0.000 9). At week 52, the mean foveal retinal thickness in the two groups decreased by −189.6, −170.0 μm, respectively. Subjects with the most BCVA increase in IAI group were those aged <65, and those with active CNV lesion area <50% of total lesion area. The most common TEAEs in IAI group and PDT-to-IAI group are macular fibrosis [11.8% (27/228), 6.6% (5/76)] and BCVA decline [6.6% (15/228), 21.1% (16/76)]. There were 3 cases of arterial thromboembolic events defined in the antiplatelet experimental collaboration group, but all were considered unrelated to interventions.ConclusionsThe efficacy of aflibercept is superior to that of PDT in nAMD patients in China. The therapeutic effect of aflibercept persisted to week 52 in all subjects. The rate of adverse events was consistent with the safety data of aflibercept known before.
ObjectiveTo analyze the influencing factors on clinical response to conbercept for diabetic macular edema (DME).MethodsA total of 51 patients (51 eyes) with DME who underwent intravitreal injection of conbercept were included in this retrospective study. The general information (age, sex, body mass index, smoking history, drinking history), blood glucose indicators (duration of diabetes, fasting blood glucose, HbA1c), blood pressure indicators (history of hypertension, systolic blood pressure, diastolic blood pressure), lipid indicators [total cholesterol (TC), high-density lipoprotein (HDL), apolipoprotein A (APOA)], biochemical indicators [neutrophil concentration, hemoglobin (HB), serum creatinine (Scr)] were collected. The best corrected visual acuity (BCVA) and macular central macular thickness (CMT) before and after treatment were comparatively analyzed. CMT reduced not less than 20% and BCVA increased by 2 lines as effective standards. Univariate analysis and multivariate logistic regression analysis were used to determine the factors affecting the efficacy of intravitreal injection of conbercept in patients with DME.ResultsUnivariate analysis showed that diastolic blood pressure, HDL, serum neutrophil concentration, baseline CMT and baseline BCVA were associated with edema regression (P<0.05); HbA1c was associated with vision improvement (P<0.05). Multivariate logistic regression analysis showed that there was a history of smoking (OR=0.122, 95% CI 0.017 − 0.887), low diastolic blood pressure (OR=0.850, 95%CI0.748 − 0.966), low HDL (OR=0.007, 95%CI 0.000 1 − 0.440), thin baseline CMT (OR=0.986, 95%CI0.977 − 0.995) were independent risk factors for failure outcome of edema regression (P<0.05); long duration of diabetes (OR=1.191, 95%CI 1.011 − 1.404), high APOA (OR=1.007, 95% CI 1.000 − 1.013) were independent risk factors for failure outcome of vision improvement. Age, fasting blood glucose, systolic blood pressure, TC, HB, Scr and other indicators had no effect on the efficacy of edema regression and vision improvement after treatment (P>0.05).ConclusionsSmoking history, long duration of diabetes, low diastolic blood pressure, low HDL level, high APOA level and thin baseline CMT are independent risk factors for the treatment of DME with intravitreal injection of conbercept.