The key for performing meta-analysis using WinBUGS software is to construct a model of Bayesian statistics. The hand-written code model and Doodle model are two major methods for constructing it. The approach of hand-written code is flexible and convenient, but the language programming is fallibility. The Doodle is complicated, but it is benefit to understand the structure of hand-written code model and prevent error. This article briefly describes how to construct the Doodle model for binary and continuous data of head to head meta-analysis, indirect comparison and network meta-analysis, and ordinal variables meta-analysis.
The method of evaluating clinical efficacy of traditional Chinese medicine is one of the hotspots in the field of traditional Chinese medicine in recent years. How to dynamically evaluate individual efficacy is one of the key scientific problems to explain the clinical efficacy of traditional Chinese medicine. At present, there are no recognized methods of evaluating individual efficacy of traditional Chinese medicine. In this study, we provided a method of dynamically evaluating individual efficacy of traditional Chinese medicine based on Bayesian N-of-1 trials after analyzing the current status of researches on methods of evaluating individual efficacy of traditional Chinese medicine. This method has the advantages of both N-of-1 trials and Bayesian multilevel models. It is feasible to evaluate individual efficacy of traditional Chinese medicine from the perspective of the design and analysis method. This study can provide an important basis for enriching and improving the methodology of evaluating individual efficacy of traditional Chinese medicine.
The WinBUGS software can be called from either R (provided R2WinBUGS as an R package) or Stata software for network meta-analysis. Unlike R, Stata software needs to create relevant ADO scripts at first which simplify operation process greatly. Similar with R, Stata software also needs to load another package when drawing network plots. This article briefly introduces how to implement network meta-analysis using Stata software by calling WinBUGS software.
ObjectivesTo systematically review the efficacy of seven types of cognitive interventions for older adults with mild to moderate Alzheimer's Disease (AD).MethodsWe searched The Cochrane Library, PubMed, EMbase, CNKI, WanFang Data, VIP and CBM databases to collect randomized controlled trials on cognitive interventions for mild to moderate Alzheimer's Disease (AD) from inception to January 2018. Two reviewers independently screened literature, extracted data, and assessed the risk of bias of included studies. STATA 14.0 software was then used to perform a meta-analysis.ResultsA total of 49 randomized controlled trials (RCTs) were included. The results of network meta-analysis revealed that each cognitive intervention had significantly improved the cognitive ability of AD patients. Specifically, nursing intervention (NI) (MD=3.01, 95%CI 1.70 to 4.50, P<0.005) was the most effective enhancer of cognitive ability, followed by music therapy (MT) (MD=2.60, 95%CI 0.96 to 4.30, P<0.001), physical exercise (PE) (MD=2.4, 95%CI 1.0 to 3.9, P<0.001), cognitive rehabilitation (CR) (MD=2.3, 95% CI 0.92 to 3.7, P=0.013), cognitive simulation (CS) (MD=1.7, 95%CI 1.2 to 2.3, P=0.037), computerized cognitive training (CCT) (MD=1.6, 95%CI 0.42 to 2.8, P<0.001), and pharmacological therapies (PT) (MD=1.5, 95%CI 0.24 to 2.8, P=0.041).ConclusionsThe seven types of cognitive interventions are helpful in improving the cognitive ability of Alzheimer's patients, and nursing intervention is the most effective cognitive intervention. Moreover, non-pharmacological therapies may be better than pharmacological therapies.
The netmeta package is specialized for implementing network meta-analysis. This package was developed based on the theories of classical frequentist under R language framework. The netmeta package overcomes some difficulties of the software and/or packages based on the theories of Bayesian, for these software and/or packages need to set prior value when conducting network meta-analysis. The netmeta package also has the advantages of simple operation process and ease to operate. Moreover, this package can calculate and present the individual matched and pooled results based on the random and fixed effect model at the same time. It also can draw forest plots. This article gives a briefly introduction to show the process to conduct network meta-analysis using netmeta package.
ObjectiveTo examine statistical performance of different rare-event meta-analyses methods.MethodsUsing Monte-Carlo simulation, we set a variety of scenarios to evaluate the performance of various rare-event meta-analysis methods. The performance measures included absolute percentage error, root mean square error and interval coverage.ResultsAcross different scenarios, the absolute percentage error and root mean square error were similar for Bayesian logistic regression model, generalized mixed linear effects model and continuity correction, but the interval coverage was higher with Bayesian logistic regression model. The statistical performances with Mantel-Haenszel method and Peto method were consistently suboptimal across different scenarios.ConclusionsBayesian logistic regression model may be recommended as a preferred approach for rare-event meta-analysis.
The "bnma" package is a Bayesian network meta-analysis software package developed based on the R programming language. The network meta-analysis was performed utilizing JAGS software, which yielded relevant results and visual graphs. Moreover, this software package provides support for various data structures and types, while also providing the advantages of flexible utilization, user-friendly operation, and deliver of rich and accurate outcomes. In this paper, using a network meta-analysis example of different therapies for androgenetic alopecia, the operational process of conducting network meta-analysis using the "bnma" package is briefly introduced.
Objective To analyze the substitution mechanism of surrogate endpoints for traditional Chinese medicine (TCM) clinical efficacy evaluation of chronic heart failure (CHF). Methods To obtain data from the occurrence of surrogate endpoints and cardiogenic death of patients with CHF in 7 hospitals. The causal relationship between surrogate endpoints and cardiogenic mortality was inferred by the Bayesian network model, and the interaction among surrogate endpoints was analyzed by non-conditional logistic regression model. Results A total of 2 961 patients with CHF were included. The results of Bayesian network causal inference showed that cardiogenic mortality had a causal relationship with the surrogate endpoints including NYHA classification (P=0.46), amino-terminal pro-B-type natriuretic peptide (NT-proBNP) (P=0.24), left ventricular ejaculation fraction (LVEF) (P=0.19), and hemoglobin (HB) (P=0.11); non-conditional logistic regression analysis showed that NYHA classification had interaction with NT-proBNP, LVEF, and HB prior to and after adjusting confounders. Conclusions The substitution capability of surrogate endpoints for TCM clinical efficacy evaluation of CHF for cardiogenic mortality are NYHA classification, NT-proBNP, LVEF, and HB in turn, and there is a multiplicative interaction between the main surrogate endpoint NYHA classification and the secondary surrogate endpoints including NT-proBNP, LVEF, and HB, suggesting that when the two surrogate endpoints with interaction exist at the same time, it can enhance the substitution capability of surrogate endpoints for cardiogenic mortality.
ObjectiveTo introduce Bayesian meta-analysis of dichotomous data using PROC MCMC in SAS software.MethodsA previous published systematic review was used as an example, Bayesian meta-analysis of dichotomous data was implemented by PROC MCMC in SAS software, and programming code was provided.ResultsThe log-transformed value of odds ratio (OR) was used as the efficacy. The results of the Bayesian meta-analysis were very similar to those obtained by the frequency method.ConclusionsBased on the powerful programming capabilities of SAS, PROC MCMC can easily implement Bayesian meta-analysis of dichotomous data. With the rapid development of Bayesian statistical theory, Bayesian meta-analysis will play an important role in the field of meta-analysis.
Exploring the functional network during the interaction between emotion and cognition is an important way to reveal the underlying neural connections in the brain. Sparse Bayesian network (SBN) has been used to analyze causal characteristics of brain regions and has gradually been applied to the research of brain network. In this study, we got theta band and alpha band from emotion electroencephalogram (EEG) of 22 subjects, constructed effective networks of different arousal, and analyzed measurements of complex network including degree, average clustering coefficient and characteristic path length. We found that: ① compared with EEG signal of low arousal, left middle temporal extensively interacted with other regions in high arousal, while right superior frontal interacted less; ② average clustering coefficient was higher in high arousal and characteristic path length was shorter in low arousal.