west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Bayesian meta-analysis" 3 results
  • Performing Bayesian meta-analysis and meta-regression using bmeta package in R software

    The R software bmeta package is a package that implements Bayesian meta-analysis and meta-regression by invoking JAGS software. The program is based on the Markov Chain Monte Carlo (MCMC) algorithm to combine various effect quantities (OR, MD and IRR) of different types of data (dichotomies, continuities and counts). The package has the advantages of fewer command function parameters, rich models, powerful drawing function, easy of understanding and mastering. In this paper, an example is presented to demonstrate the complete operation flow of bmeta package to implement bayesian meta-analysis and meta-regression.

    Release date:2021-01-26 04:48 Export PDF Favorites Scan
  • Implementing Bayesian meta-analysis of binary data using PROC MCMC process step in the SAS software

    ObjectiveTo introduce Bayesian meta-analysis of dichotomous data using PROC MCMC in SAS software.MethodsA previous published systematic review was used as an example, Bayesian meta-analysis of dichotomous data was implemented by PROC MCMC in SAS software, and programming code was provided.ResultsThe log-transformed value of odds ratio (OR) was used as the efficacy. The results of the Bayesian meta-analysis were very similar to those obtained by the frequency method.ConclusionsBased on the powerful programming capabilities of SAS, PROC MCMC can easily implement Bayesian meta-analysis of dichotomous data. With the rapid development of Bayesian statistical theory, Bayesian meta-analysis will play an important role in the field of meta-analysis.

    Release date:2021-03-19 07:04 Export PDF Favorites Scan
  • Bayesian meta-analysis methods for integrating randomised and non-randomised intervention studies and R language implementation

    ObjectiveTo introduce a Bayesian meta-analysis method for quantitatively integrating evidence from both randomized controlled trials (RCTs) and non-randomized studies of interventions (NRSIs), using concrete examples and R code, thereby supporting the combined utilization of both study types in empirical research. MethodsUsing a meta-analysis on the association between low-dose methotrexate exposure and melanoma as an example, we employed the jarbes package in R to conduct both a traditional Bayesian meta-analysis and a Bayesian nonparametric bias-correction meta-analysis model for quantitative integration. The differences between the two pooled results were then compared. ResultsThe traditional Bayesian meta-analysis indicated a posterior probability of 99% that low-dose methotrexate exposure increases melanoma risk. The Bayesian nonparametric bias-correction meta-analysis model showed a posterior probability of 92% that low-dose methotrexate exposure increases melanoma risk. ConclusionCompared to the traditional Bayesian meta-analysis model, the nonparametric bias-correction meta-analysis model is more suitable for quantitatively integrating evidence from RCTs and NRSIs, demonstrating potential for broader application. However, the comparability between the two evidence bodies should be carefully assessed prior to quantitative integration.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content