High-frequency steady-state asymmetric visual evoked potential (SSaVEP) provides a new paradigm for designing comfortable and practical brain-computer interface (BCI) systems. However, due to the weak amplitude and strong noise of high-frequency signals, it is of great significance to study how to enhance their signal features. In this study, a 30 Hz high-frequency visual stimulus was used, and the peripheral visual field was equally divided into eight annular sectors. Eight kinds of annular sector pairs were selected based on the mapping relationship of visual space onto the primary visual cortex (V1), and three phases (in-phase[0º, 0º], anti-phase [0º, 180º], and anti-phase [180º, 0º]) were designed for each annular sector pair to explore response intensity and signal-to-noise ratio under phase modulation. A total of 8 healthy subjects were recruited in the experiment. The results showed that three annular sector pairs exhibited significant differences in SSaVEP features under phase modulation at 30 Hz high-frequency stimulation. And the spatial feature analysis showed that the two types of features of the annular sector pair in the lower visual field were significantly higher than those in the upper visual field. This study further used the filter bank and ensemble task-related component analysis to calculate the classification accuracy of annular sector pairs under three-phase modulations, and the average accuracy was up to 91.5%, which proved that the phase-modulated SSaVEP features could be used to encode high- frequency SSaVEP. In summary, the results of this study provide new ideas for enhancing the features of high-frequency SSaVEP signals and expanding the instruction set of the traditional steady state visual evoked potential paradigm.
Neurofeedback (NF) technology based on electroencephalogram (EEG) data or functional magnetic resonance imaging (fMRI) has been widely studied and applied. In contrast, functional near infrared spectroscopy (fNIRS) has become a new technique in NF research in recent years. fNIRS is a neuroimaging technology based on hemodynamics, which has the advantages of low cost, good portability and high spatial resolution, and is more suitable for use in natural environments. At present, there is a lack of comprehensive review on fNIRS-NF technology (fNIRS-NF) in China. In order to provide a reference for the research of fNIRS-NF technology, this paper first describes the principle, key technologies and applications of fNIRS-NF, and focuses on the application of fNIRS-NF. Finally, the future development trend of fNIRS-NF is prospected and summarized. In conclusion, this paper summarizes fNIRS-NF technology and its application, and concludes that fNIRS-NF technology has potential practicability in neurological diseases and related fields. fNIRS can be used as a good method for NF training. This paper is expected to provide reference information for the development of fNIRS-NF technology.
Motor imagery electroencephalogram (EEG) signals are non-stationary time series with a low signal-to-noise ratio. Therefore, the single-channel EEG analysis method is difficult to effectively describe the interaction characteristics between multi-channel signals. This paper proposed a deep learning network model based on the multi-channel attention mechanism. First, we performed time-frequency sparse decomposition on the pre-processed data, which enhanced the difference of time-frequency characteristics of EEG signals. Then we used the attention module to map the data in time and space so that the model could make full use of the data characteristics of different channels of EEG signals. Finally, the improved time-convolution network (TCN) was used for feature fusion and classification. The BCI competition IV-2a data set was used to verify the proposed algorithm. The experimental results showed that the proposed algorithm could effectively improve the classification accuracy of motor imagination EEG signals, which achieved an average accuracy of 83.03% for 9 subjects. Compared with the existing methods, the classification accuracy of EEG signals was improved. With the enhanced difference features between different motor imagery EEG data, the proposed method is important for the study of improving classifier performance.
Control at beyond-visual ranges is of great significance to animal-robots with wide range motion capability. For pigeon-robots, such control can be done by the way of onboard preprogram, but not constitute a closed-loop yet. This study designed a new control system for pigeon-robots, which integrated the function of trajectory monitoring to that of brain stimulation. It achieved the closed-loop control in turning or circling by estimating pigeons’ flight state instantaneously and the corresponding logical regulation. The stimulation targets located at the formation reticularis medialis mesencephali (FRM) in the left and right brain, for the purposes of left- and right-turn control, respectively. The stimulus was characterized by the waveform mimicking the nerve cell membrane potential, and was activated intermittently. The wearable control unit weighted 11.8 g totally. The results showed a 90% success rate by the closed-loop control in pigeon-robots. It was convenient to obtain the wing shape during flight maneuver, by equipping a pigeon-robot with a vivo camera. It was also feasible to regulate the evolution of pigeon flocks by the pigeon-robots at different hierarchical level. All of these lay the groundwork for the application of pigeon-robots in scientific researches.
Steady-state visual evoked potential (SSVEP) has been widely used in the research of brain-computer interface (BCI) system in recent years. The advantages of SSVEP-BCI system include high classification accuracy, fast information transform rate and strong anti-interference ability. Most of the traditional researches induce SSVEP responses in low and middle frequency bands as control signals. However, SSVEP in this frequency band may cause visual fatigue and even induce epilepsy in subjects. In contrast, high-frequency SSVEP-BCI provides a more comfortable and natural interaction despite its lower amplitude and weaker response. Therefore, it has been widely concerned by researchers in recent years. This paper summarized and analyzed the related research of high-frequency SSVEP-BCI in the past ten years from the aspects of paradigm and algorithm. Finally, the application prospect and development direction of high-frequency SSVEP were discussed and prospected.
The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.
This study investigates a brain-computer interface (BCI) system based on an augmented reality (AR) environment and steady-state visual evoked potentials (SSVEP). The system is designed to facilitate the selection of real-world objects through visual gaze in real-life scenarios. By integrating object detection technology and AR technology, the system augmented real objects with visual enhancements, providing users with visual stimuli that induced corresponding brain signals. SSVEP technology was then utilized to interpret these brain signals and identify the objects that users focused on. Additionally, an adaptive dynamic time-window-based filter bank canonical correlation analysis was employed to rapidly parse the subjects’ brain signals. Experimental results indicated that the system could effectively recognize SSVEP signals, achieving an average accuracy rate of 90.6% in visual target identification. This system extends the application of SSVEP signals to real-life scenarios, demonstrating feasibility and efficacy in assisting individuals with mobility impairments and physical disabilities in object selection tasks.
Stroke is an acute cerebrovascular disease in which sudden interruption of blood supply to the brain or rupture of cerebral blood vessels cause damage to brain cells and consequently impair the patient's motor and cognitive abilities. A novel rehabilitation training model integrating brain-computer interface (BCI) and virtual reality (VR) not only promotes the functional activation of brain networks, but also provides immersive and interesting contextual feedback for patients. In this paper, we designed a hand rehabilitation training system integrating multi-sensory stimulation feedback, BCI and VR, which guides patients' motor imaginations through the tasks of the virtual scene, acquires patients' motor intentions, and then carries out human-computer interactions under the virtual scene. At the same time, haptic feedback is incorporated to further increase the patients' proprioceptive sensations, so as to realize the hand function rehabilitation training based on the multi-sensory stimulation feedback of vision, hearing, and haptic senses. In this study, we compared and analyzed the differences in power spectral density of different frequency bands within the EEG signal data before and after the incorporation of haptic feedback, and found that the motor brain area was significantly activated after the incorporation of haptic feedback, and the power spectral density of the motor brain area was significantly increased in the high gamma frequency band. The results of this study indicate that the rehabilitation training of patients with the VR-BCI hand function enhancement rehabilitation system incorporating multi-sensory stimulation can accelerate the two-way facilitation of sensory and motor conduction pathways, thus accelerating the rehabilitation process.
Artificial intelligence-enhanced brain-computer interfaces (BCI) are expected to significantly improve the performance of traditional BCIs in multiple aspects, including usability, user experience, and user satisfaction, particularly in terms of intelligence. However, such AI-integrated or AI-based BCI systems may introduce new ethical issues. This paper first evaluated the potential of AI technology, especially deep learning, in enhancing the performance of BCI systems, including improving decoding accuracy, information transfer rate, real-time performance, and adaptability. Building on this, it was considered that AI-enhanced BCI systems might introduce new or more severe ethical issues compared to traditional BCI systems. These include the possibility of making users’ intentions and behaviors more predictable and manipulable, as well as the increased likelihood of technological abuse. The discussion also addressed measures to mitigate the ethical risks associated with these issues. It is hoped that this paper will promote a deeper understanding and reflection on the ethical risks and corresponding regulations of AI-enhanced BCIs.
Brain-computer interface (BCI) is a revolutionizing technology that disrupts traditional human-computer interaction by establishing direct communication and control between the brain and computer, bypassing the peripheral nervous and muscular systems. With the rapid advancement of BCI technology, growing application demands, and an increasing need for specialized BCI professionals, a new academic major—BCI major—has gradually emerged. However, few studies to date have discussed the interdisciplinary nature and training framework of this emerging major. To address this gap, this paper first introduced the application demands of BCI, including the demand for BCI technology in both medical and non-medical fields. The paper also described the interdisciplinary nature of the BCI major and the urgent need for specialized professionals in this field. Subsequently, a training program of the BCI major was presented, with careful consideration of the multidisciplinary nature of BCI research and development, along with recommendations for curriculum structure and credit distribution. Additionally, the facing challenges of the construction of the BCI major were analyzed, and suggested strategies for addressing these challenges were offered. Finally, the future of the BCI major was envisioned. It is hoped that this paper will provide valuable reference for the development and construction of the BCI major.