west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Cartilage" 83 results
  • IMMUNOLOGICAL INVESTIGATION OF REPAIR OF ARTICULAR CARTILAGE DEFECTS WITH ALLOGENEIC CHONDROCYTES IN PORCINS

    Objective To evaluate the immunological reaction and the outcome of allogeneic chondrocyte transplantation in repairing articular cartilage defects in porcins. Methods Full articular cartilage from the knee of two Shanghai white porcins about one-month-old was removed and cut mechanically, digested by 0.25% trypsin and 0.2% type Ⅱ collagenase and cultured in 10% DMEM medium. Defects of 0.5 cm×0.5 cm involving the subchodral bone were created in both the left and right femur condyloid in 8 two-month-old Yunnai bama porcins. Allogeneic chondrocyte transplantation were implanted in defects at a density of (1.0-2.0)×106,0.2 ml. The lymphocytes from the receivers’ blood were collected before transplantation and after 3, 5, 7 and 12 weeks of transplantation, then mixed with allogeneic chondrocytes to determin the lymphocyte stimulation index(SI) in vitro. The histological observation in vivo was made after 5, 7 and 24 weeks of transplantation. Results Lymphocyte SI at 3, 5, 7 and 12 weeks(1.457±0.062,1.739±0.142,1.548±0.047,1.216±0.028) after transplantation was higher than that before transplantation(1.102±0.034,Plt;0.05). SI began to increase in the 3rd week and reached the peak value in the 5th week, then gradually declined at the 7th and 12th weeks, showing significant differences when compared with in the 5th week (Plt;0.05). Inflammation and lymphocytes infiltration could be seen in subchondral bone and the intergration area between repair tissue and normal cartilage in the 5th week, and then decreased and limited in subchondral bone in the 7th week. Defects were filled with cartilage tissue, which had good intergration with subchondral bone at 24 weeks after transplantation. Conclusion Immunological reactions can be found at early stage of allogeneic chondrocyte transplantation and then decreased with the time, the fullthickness articular cartilage defects could be repaired mainlywith hyaline cartilage by the allogeneic chondrocyte transplantation. This may provide a new method to repair articular cartilage defects clinically.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • FORMATION OF THE ALLOGENEIC TISSUE ENGINEERED CARTILAGE USING INJECTABLE BIOMATERIAL

    OBJECTIVE: To study the feasibility of the formation of allogeneic tissue-engineered cartilage of certain shape in immunocompetent animal using the injectable biomaterial. METHODS: Fresh newborn rabbits’ articular cartilages were obtained under sterile condition (lt; 6 hours after death) and incubated in the sterile 0.3% type II collagenase solution. After digestion of 8 to 12 hours, the solution was filtered through a 150 micron nylon mesh and centrifuged, then the chondrocytes were washed twice with phosphate buffered saline (PBS) and mixed with the biomaterial to create a final cell density of 5 x 107/ml. The cell-biomaterial admixture was injected into rabbits subcutaneously 0.3 ml each point while we drew the needle back in order to form the neocartilage in the shape of cudgel, and the control groups were injected with only the biomaterial or the suspension of chondrocytes with the density of 5 x 10(7)/ml. After 4, 6, 8 and 12 weeks, the neocartilages were harvested to analyze. RESULTS: The new nodes could be touched subcutaneously after 2 weeks. In the sections of the samples harvested after 4 weeks, it was found that the matrix secreted and the collagen formed. After 6 weeks and later than that, the neocartilages were mature and the biomaterial was almost completely degraded. The cudgel-shaped samples of neocartilage could be formed by injection. In the experiment group, there was no obvious immune rejection response. On the contrary, there were no neocartilage formed in the control group. CONCLUSION: The injectable biomaterial is a relatively ideal biomaterial for tissue engineering, and it is feasible to form allogeneic tissue engineered cartilage of certain shape by injection in an immunocompetent animal.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON GELATIN-CHONDROITIN SULFATE-SODIUM HYALURONATE TRICOPOLYMER AS NOVEL SCAFFOLDS FOR CARTILAGE TISSUE ENGINEERING

    Objective To fabricate a novel gelatinchondroitin sulfate-sodium hyaluronate tri-copolymer scaffold and to confirm the feasibility of serving as ascaffold for cartilage tissue engineering. Methods Different scaffolds was prepared with gelatin-chondroitin sulfatesodium hyaluronate tri-copolymer by varying the freezing temperatures (-20℃,-80℃ and liquid nitrogen). Pore size, porosity, inter pores and density were observed with light microscopy and scanning electron microscopy (SEM). The load-stiffness curves were compared between different scaffolds and normal cartilage. The number of MSCs attaching to different scaffolds and the function of cells were also detected with MTT colorimetric microassay. Results The pore size was 300±45, 230±30 and 45±10 μm; the porosity was 81%, 79% and 56%; the density was 9.41±0.25, 11.50±0.36 and 29.50±0.61 μg/mm3 respectively in different scaffolds fabricated at -20℃,-80℃ and liquid nitrogen; the latter two scaffolds had nearly the same mechanical property with normal cartilage; the cell adhesion rates were 85.0%, 87.5% and 56.3% respectively in different scaffolds and the scaffolds can mildly promote the proliferation of MSCs. Conclusion Gelatin-chondroitin sulfatesodium hyaluronate tricopolymer scaffold fabricated at -80℃ had proper pore size, porosity and mechanical property. It is a novel potential scaffold for cartilage tissue engineering.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON COLLAGEN HYDROGEL SCAFFOLDS FOR CARTILAGE TISSUE ENGINEERING

    Objective To investigate the effect of collagen type I concentration on the physical and chemical properties of the collagen hydrogel, and to analyze the effect of different concentrations of collagen type I hydrogel on the phenotype and gene expression of the chondrocytes in vitro. Methods Three kinds of collagen hydrogels with concentrations of 12, 8, and 6 mg/ mL (C12, C8, and C6) were prepared, respectively. The micro-structure, compressive modulus, and swelling ratio of the hydrogels were measured and analyzed. The chondrocytes at 2nd passage were cocultured with three kinds of collagen hydrogels in vitro, respectively. After 1-day culture, the samples were stained with fluorescein diacetate (FDA) / propidium iodide (PI) and the cell activity was observed under confocal laser microscope. After 14-day culture, HE staining and toluidine blue staining were carried out to observe the histological morphology, and mRNA expressions of chondrocytes related genes (collagen type II, Aggrecan, collagen type I, collagen type X, Sox9) were determined by real-time fluorescent quantitative PCR. Results With the increase of collagen type I concentration from 6 to 12 mg/mL, the physical and chemical properties of the collagen hydrogels changed significantly: the fiber network became dense; the swelling ratios of C6, C8, and C12 were 0.260 ± 0.055, 0.358 ± 0.072, and 0.539 ± 0.033 at 192 hours, respectively, showing significant differences among 3 groups (P lt; 0.05); and the compression modulus were (4.86 ± 0.96), (7.09 ± 2.33), and (11.08 ± 3.18) kPa, respectively, showing significant differences among 3 groups (P lt; 0.05). After stained with FDA/PI, most cells were stained green, and few were stained red. The histological observation results showed that the chondrocytes in C12 hydrogels aggregated obviously with b heterochromia, chondrocytes in C8 hydrogels aggregated partly with obvious heterochromia, and chondrcytes in C6 hydrogels uniformly distributed with weak heterochromia. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of collagen type II and Aggrecan were at the same level in C12, C8, and C6; the expressions of collagen type I, Sox9, and collagen type X were up-regulated with the increase of collagen type I hydrogels concentration, and the expressions were the highest at 12 mg/mL and were the lowest at 6 mg/mL, showing significant differences among 3 groups (P lt; 0.05). Conclusion Increasing the concentration of collagen hydrogels leads to better mechanical properties and higher shrink-resistance, but it may induce the up-regulation of cartilage fibrosis and hypertrophy related gene expression.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF ARTICULAR CARTILAGE SCAFFOLD FOR TISSUE ENGINEERING

    Objective To review the research progress of articular cartilage scaffold materials and look into the future development prospects. Methods Recent literature about articular cartilage scaffold for tissue engineering was reviewed, and the results from experiments and clinical application about natural and synthetic scaffold materials were analyzed. Results The design of articular cartilage scaffold for tissue engineering is vital to articular cartilage defects repair. The ideal scaffold can promote the progress of the cartilage repair, but the scaffold materials still have their limitations. Conclusion It is necessary to pay more attention to the research of the articular cartilage scaffold, which is significant to the repair of cartilage defects in the future.

    Release date:2016-08-31 04:21 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF CARTILAGE OLIGOMERIC MATRIX PROTEIN/BA

    Objective To review the research progress of cartilage ol igomeric matrix protein (COMP). Methods Domestic and abroad l iterature about COMP was reviewed and summarized. Results COMP was one of the osteoarthritis (OA) biomarkers of being widely studied. Most studies in recent years could draw the conclusion that COMP was associated with OA. COMP was the foremost biomarker among investgated biomarkers. It could been continuously expressed and predicted knee OA progression. Conclusion Precisely what role COMP plays in OA pathogenesis remains unclear, using COMP as a tool to early diagnose OA more studies would be needed.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF CONTROLLED RELEASING DELIVERY OF BIOLOGICAL FACTORS FOR CARTILAGE REPAIR

    ObjectiveTo summarize the recent progress of the controlled releasing delivery of biological factors for cartilage repair. MethodsThe recently published 1iterature at home and abroad on the controlled releasing delivery of biological factors for cartilage repair was reviewed and summarized. ResultsVarious biological factors have been applied for repairing cartilage. For better cartilage repair effects, controlled releasing delivery of biological factors can be applied by means of combining biological factors with degradable biomaterials, or by micro- and nano-particles. Meanwhile, multiple biologic delivery and temporally controlled delivery are also inevitable choices. ConclusionAlthough lots of unsolved problems exist, the controlled releasing delivery of biological factors has been a research focus for cartilage repair because of the controllability and delicacy.

    Release date: Export PDF Favorites Scan
  • STRESS REGULATING OSTEOGENIC DIFFERENTIATION OF HUMAN INTERVERTEBRAL DISC CARTILAGE ENDPLATE-DERIVED STEM CELLS

    ObjectiveTo investigate the effect of cyclic stretch stress on the osteogenic differentiation of human cartilage endplate-derived stem cells (CESCs). MethodsCESCs were isolated from the endplate cartilage tissues by the method of agarose suspension culture system. The endplate cartilage tissue was harvested for immunohistochemical staining. Flexercell-4000TM Tension Plus system was used to apply cyclic stretch on CESCs at a frequency of 1 Hz and at a stretch rate of 10% for 1, 6, 12, or 24 hours (experimental group). No stretch stress was performed on CESCs in the same culture condition (control group). After mechanical loading, the protein expression of bone morphogenetic protein 2 (BMP-2) was measured by Western blot, and gene expressions of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and SOX9 were detected by real-time fluorescent quantitative PCR. ResultsImmunohistochemical staining showed BMP-2 protein expression in chondrocytes. The continuous cyclic stretch stress of 10% can increase the expression of BMP-2 protein in CESCs. Significant differences were observed in the expressions of BMP-2 protein (P<0.05) between 2 groups at the other time points except at 1 hour (P>0.05), in a time-dependent manner. The real-time fluorescent quantitative PCR indicated that the gene expressions of Runx2 and ALP showed an increasing tendency with time in the experimental group when compared with the control group, but there was down-regulated expression of SOX9. Significant difference was found in mRNA expressions of Runx2 and ALP at 12 and 24 hours and in mRNA expressions of SOX9 at 6, 12, and 24 hours between 2 groups (P<0.05), in a time-dependent manner. ConclusionCyclic stretch stress may induce osteogenic differentiation of CESCs by regulating the expressions of some genes related osteogenesis in CESCs.

    Release date: Export PDF Favorites Scan
  • CHONDROGENESIS OF PASSAGED CHONDROCYTES INDUCED BY DIFFERENT DYNAMIC LOADS IN BIOREACTOR

    Objective To investigate the effect of dynamic compression and rotation motion on chondrogenesis of the 3rd passage cell-loaded three-dimensional scaffold in a joint-specific bioreactor in vitro so as to provide theoretical basis of the autologous chondrocyte transplantation in clinical practice. Methods Primary chondrocytes were isolated and cultured from the knee cartilage of 3-4 months old calves. The 3rd passage cells were seeded onto fibrin-polyurethane scaffolds (8 mm × 4 mm). Experiment included 5 groups: unloaded culture for 2 weeks (group A), direct load for 2 weeks (group B), unloaded culture for 4 weeks (group C), direct load for 4 weeks (group D), and unload for 2 weeks followed by load for 2 weeks (group E). The cell-scaffold was incubated in incubator (unload) or in a joint-specific bioreactor (load culture). At different time points, the samples were collected for DNA and glycosaminoglycan (GAG) quantification detect; mRNA expressions of chondrogenic marker genes such as collagen type I, collagen type II, Aggrecan, cartilage oligomeric matrix protein (COMP), and superficial zone protein (SZP) were detected by real-time quantitative PCR; and histology observations were done by toluidine blue staining and immunohistochemistry staining. Results No significant difference was found in DNA content, GAG content, and the ratio of GAG to DNA among 5 groups (P gt; 0.05). After load, there was a large number of GAG in the medium, and the GAG significantly increased with time (P lt; 0.05). The mRNA expression of collagen type I showed no significant difference among 5 groups (P gt; 0.05). The mRNA expression of collagen type II in group B was significantly increased when compared with group A (P lt; 0.01), and groups D and E were significantly higher than group C (P lt; 0.01); the mRNA expression of Aggrecan in groups D and E were significantly increased when compared with group C (P lt; 0.01), and group E was significantly higher than group D (P lt; 0.01); the mRNA expression of COMP in group B was significantly increased when compared with group A (P lt; 0.01), and group E was significantly higher than group C (P lt; 0.01); and the mRNA expression of SZP in group E was significantly increased when compared with groups C and D (P lt; 0.05). The toluidine blue staining and immunohistochemistry staining displayed that synthesis and secretion of GAG could be enhanced after load; no intensity changes of collagen type I and collagen type II were observed, but intensity enhancement of Agrrecan was seen in groups D and E. Conclusion Different dynamic loads can promote chondrogenesis of the 3rd passage chondrocytes. Culture by load after unload may be the best culture for chondrogenesis, while the 3rd passage chondrocytes induced by mechanical load hold less capacity of chondrogenesis.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EXPRESSIONS OF CARTILAGE DEGENERATIVE RELATED GENES AND microRNAs IN TORN MENISCUS

    ObjectiveTo investigate the expressions of cartilage degenerative related genes in meniscus, and to evaluate the potential effect of meniscal damage on cartilage degeneration, and to analyze the relationship between microRNAs (miRNAs) expression and cartilage degeneration. MethodsMeniscal tissue was collected from 5 patients undergoing partial meniscectomy between September 2012 and October 2013 (experimental group), and normally meniscal tissue without tearing from amputees was used as controls (control group). Pathological changes of menisci were observed; and real-time fluorescent quatitative PCR was performed to examine the relative expression levels of cartilage degenerative related genes and miRNAs:Aggrecan (ACAN), type X collagen (COL10A1), matrix metalloproteinases 13 (MMP-13), CCAAT enhancer binding protein β (CEBP-β), a disintegrin and metalloproteinase with thrombospondinmotif 5 (ADAMTS-5), miR-193b, miR-92a, and miR-455-3p in meniscus. ResultsThere were varying degrees of degenerative pathological changes in torn meniscus of experimental group. Compared with normal meniscus of control group, the expression of ACAN was decreased, while the expressions of COL10A1, CEBP-β, ADAMTS-5, and MMP-13 were increased in torn meniscus of experimental group; and significant difference was found (P<0.05) except ACAN and MMP-13 (P>0.05). The expressions of miR-92a, miR-455-3p, and miR-193b in torn meniscus of experimental group were significantly higher than those in normal meniscus of control group (P<0.05). ConclusionMeniscal tissue has the intrinsic tendency of degeration after meniscus tear. The torn meniscus has greater stimulative impact on cartilage degeneration than normally morphological meniscus without tearing. The cartilage degenerative related miRNAs, including miR-193b, miR-92a, and miR-455-3p may contribute to the up-regulation of osteoarthritis.

    Release date: Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content