ObjectiveTo study the hydrophilicity and the cell biocompatibility of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) coated with a fusion protein polyhydroxyalkanoates granule binding protein (PhaP) fused with Arg-Gly-Asp (RGD) peptide (PhaP-RGD). MethodsPHBV and PHBHHx films were fabricated by solvent evaporation.Scanning electronic microscope (SEM) was used to study the morphology of the films.PhaP-RGD fusion proteins were expressed and purified by the technology of protein engineering; PHBV and PHBHHx films were immersed in the PhaP-RGD with an amount of 3.5 mg/mL protein/per sample respectively.The hydrophilicity of the surface were detected by the contact angle measurements.Septal cartilage cells obtained from human septal cartilage were cultured in vitro.The 2nd passage chondrocytes were incubated on PHBV unmodified with PhaP-RGD in group A1,PHBV modified with PhaP-RGD in group A2,PHBHHx unmodified with PhaP-RGD in group B1,PHBHHx modified with PhaP-RGD in group B2,and on the cell culture plates in group C.After cultured for 3 days,the proliferation of cells was detected by the DAPI staining; the proliferation viability of cells was detected by the MTT assay after cultured for 3 and 7 days; after cultured for 7 days,the adhesion and morphology of the cells on the surface of the biomaterial films were observed by SEM and the matrix of the cells was detected through the toluidine blue staining. ResultsSEM observation showed that PHBV and PHBHHx films had porous structures.The contact angle of the surface of the PHBV and PHBHHx films modified with PhaP-RGD fusion proteins were significantly reduced when compared with the films unmodified with PhaP-RGD fusion proteins (P<0.05).Chondrocytes of human nasal septal cartilage incubated on the films could grow in all groups.After 3 days of cultivation in vitro,the cell proliferation and viability of group B2 were the strongest among all groups (P<0.05); the cell proliferation after cultured for 7 days was significantly stronger than that after cultured for 3 days in groups A1,A2,B1,and B2 (P<0.05); and the cell proliferation was significantly stronger in groups B1 and B2 than groups A1,A2 and C,in group B2 than group B1,and in group A1 than group A2 (P<0.05).The results of toluidine blue staining showed that blue metachromasia matrixes were observed in groups A1,A2,B1,and B2; group A1 and group A2 had similar staining degree,and the staining of group B2 was deeper than that of group B1.The adhesion of cells in all groups was good through SEM observation; and the connection of cells formed and stretched into the pores of the materials. ConclusionThe biomaterial films of PHBHHx modified with PhaP-RGD fusion protein can promote its biocompatibility with chondrocytes.
ObjectiveTo review the research progress of different cell seeding densities and cell ratios in cartilage tissue engineering. MethodsThe literature about tissue engineered cartilage constructed with three-dimensional scaffold was extensively reviewed, and the seeding densities and ratios of most commonly used seed cells were summarized. ResultsArticular chondrocytes (ACHs) and bone marrow mesenchymal stem cells (BMSCs) are the most commonly used seed cells, and they can induce hyaline cartilage formation in vitro and in vivo. Cell seeding density and cell ratio both play important roles in cartilage formation. Tissue engineered cartilage with good quality can be produced when the cell seeding density of ACHs or BMSCs reaches or exceeds that in normal articular cartilage. Under the same culture conditions, the ability of pure BMSCs to build hyaline cartilage is weeker than that of pure ACHs or co-culture of both. ConclusionDue to the effect of scaffold materials, growth factors, and cell passages, optimal cell seeding density and cell ratio need further study.
ObjectiveTo isolate and culture cartilage derived stem cells from different subtypes of cartilages, and to identify their characteristics. MethodsCartilage derived stem cells were isolated from different subtypes of cartilages (auricle cartilage, articular cartilage, and intervertebral cartilage) by using adhesive method of fibronectin. The expressions of positive surface markers (CD29 and CD90) and negative surface markers (CD34 and CD45) in cartilage derived stem cells were detected via flow cytometry. The single cell colony-forming efficiency of cartilage derived stem cells was determined by clonal formation unit test; the multipotent differentiation capacity was identified by chondrogensis, osteogenesis, and adipogenesis induction. RT-PCR was used to test the expression of osteogenic, chondrogenic, and adipogenic genes; and bone marrow mesenchymal stem cells (BMSCs) served as control. ResultsThree cell populations were successfully isolated from different subtypes of cartilages, which could express CD29 and CD 90 highly, but did not express CD34 and CD45. After 2 weeks of culture, single cartilage derived stem cell could form single cell colony. In addition, cartilage derived stem cells had high chondrogenesis, osteogenesis, and adipogenesis potentials. After osteogenic induction, the expressions of collagen type Ⅰ and collagen type X in articular and intervertebral cartilage stem cells were significantly higher than those in BMSCs (P<0.05), while there was no significant difference between auricular cartilage stem cells and BMSCs (P>0.05). The expressions of Aggrecan and collagen type Ⅱ in cartilage derived stem cells after chondrogenic induction were significantly higher than those in BMSCs (P<0.05). While the ability of adipogenic differentiation was lower than that in BMSCs, but no significant difference was found (P>0.05). ConclusionCartilage derived stem cells in different subtypes of cartilages possess typical characteristics of stem cells.
Objective To prepare the silk fibroin microcarrier loaded with clematis total saponins (CTS) (CTS-silk fibroin microcarrier), and to investigate the effect of microcarrier combined with chondrocytes on promoting rabbit knee articular cartilage defects repair. Methods CTS-silk fibroin microcarrier was prepared by high voltage electrostatic combined with freeze drying method using the mixture of 5% silk fibroin solution, 10 mg/mL CTS solution, and glycerin. The samples were characterized by scanning electron microscope and the cumulative release amount of CTS was detected. Meanwhile, unloaded silk fibroin microcarrier was also prepared. Chondrocytes were isolated from knee cartilage of 4-week-old New Zealand rabbits and cultured. The 3rd generation of chondrocytes were co-cultured with the two microcarriers respectively for 7 days in microgravity environment. During this period, the adhesion of chondrocytes to microcarriers was observed by inverted phase contrast microscope and scanning electron microscope, and the proliferation activity of cells was detected by cell counting kit 8 (CCK-8), and compared with normal cells. Thirty 3-month-old New Zealand rabbits were selected to make bilateral knee cartilage defects models and randomly divided into 3 groups (n=20). Knee cartilage defects in group A were not treated, and in groups B and C were filled with the unloaded silk fibroin microcarrier-chondrocyte complexes and CTS-silk fibroin microcarrier-chondrocyte complexes, respectively. At 12 weeks after operation, the levels of matrix metalloproteinase 9 (MMP-9), MMP-13, and tissue inhibitor of MMP 1 (TIMP-1) in articular fluid were detected by ELISA. The cartilage defects were collected for gross observation and histological observation (HE staining and toluidine blue staining). Western blot was used to detect the expressions of collagen type Ⅱ and proteoglycan. The inflammatory of joint synovium was observed by histological staining and inducible nitric oxide synthase (iNOS) immunohistochemical staining. Results The CTS-silk fibroin microcarrier was spherical, with a diameter between 300 and 500 μm, a porous surface, and a porosity of 35.63%±3.51%. CTS could be released slowly in microcarrier for a long time. Under microgravity, the chondrocytes attached to the surface of the two microcarriers increased gradually with the extension of culture time, and the proliferation activity of chondrocytes at 24 hours after co-culture was significantly higher than that of normal chondrocytes (P<0.05). There was no significant difference in proliferation activity of chondrocytes between the two microcarriers (P>0.05). In vivo experiment in animals showed that the levels of MMP-9 and MMP-13 in group C were significantly lower than those in groups A and B (P<0.05), and the level of TIMP-1 in group C was significantly higher (P<0.05). Compared with group A, the cartilage defects in groups B and C were filled with repaired tissue, and the repaired surface of group C was more complete and better combined with the surrounding cartilage. Histological observation and Western blot analysis showed that the International Cartilage Repair Scoring (ICRS) and the relative expression levels of collagen type Ⅱ and proteoglycan in groups B and C were significantly better than those in group A, and group C was significantly better than group B (P<0.05). The histological observation showed that the infiltration of synovial inflammatory cells and hyperplasia of small vessels significantly reduced in group C compared with groups A and B. iNOS immunohistochemical staining showed that the expression of iNOS in group C was significantly lower than that in groups A and B (P<0.05).Conclusion CTS-silk fibroin microcarrier has good CTS sustained release effect and biocompatibility, and can promote the repair of rabbit cartilage defect by carrying chondrocyte proliferation in microgravity environment.
ObjectiveTo construct and identify the recombinant adenovirus vector expressing bone morphogenetic protein 2(BMP-2) and transforming growth factor β3(TGF-β3) genes,to observe the expressions of BMP-2 and TGF-β3 after transfected into bone marrow mesenchymal stem cells (BMSCs) of the Diannan small-ear pigs. MethodsBMP-2 cDNA and TGF-β3 cDNA were amplified by PCR,and were subcloned into the pEC3.1(+) plasmid to obtain pEC-GIE 3.1-BMP-2 and pEC-GIE3.1-TGF-β3 plasmid respectively.They were subcloned into pGSadeno vector by homologous recombination reaction and HEK293 cells were transfected after linearization to obtain Ad-BMP-2 and Ad-TGF-β3.The BMSCs were isolated from the bone marrow of Diannan small-ear pig and cultured.The 3rd passage BMSCs were transfered with Ad-BMP-2(group A),Ad-TGF-β3(group B),Ad-BMP-2+Ad-TGF-β3(group C),and untransfected cells served as a control (group D).The expressions of BMP-2 and TGF-β3 genes and proteins were detected by PCR,immunofluorescence,and Western blot.The chondrogenic differentiation of BMSCs was evaluated by immunohistochemical of collagen type Ⅱ. ResultsThe Ad-BMP-2 and Ad-TGF-β3 were constructed successfully and confirmed by PCR and sequencing.The expression clones of Ad-BMP-2 and Ad-TGF-β3 were packaged into maturated adenovirus successfully,the titer was 5.6×108 and 1.6×108 pfu/mL respectively.The PCR results showed a light band at 310 bp in group A and at 114 bp in group B,and both 310 bp and 114 bp bands in group C,but no band in group D.The image of immunofluorescence showed that there were red fluorescence and green fluorescence expressions in the cytoplasm of BMSCs at 72 hours after transfection in groups A and B,respectively;in group C,both red and green fluorescence expressions were detected,and no red or green fluorescence was detected in group D.The results of Western blot showed that there was a light band at 18×103 in group A and at 50×103 in group B;both 18×103 and 50×103 bands were detected in group C;but no band was detected in group D.The cells were positive for collagen type Ⅱ in groups A,B,and C;group C acquired strong collagen type Ⅱ staining when compared with group A and group B;in group D,the cells were negative for collagen type Ⅱ staining. ConclusionThe recombinant adenovirus vector expressing BMP-2 and TGF-β3 are constructed successfully.The BMP-2 and TGF-β3 genes could be expressed effectively in BMSCs of Diannan small-ear pig after transfection,which could afford modified seeding cells for cartilage tissue engineering.
ObjectiveTo investigate the effect of overexpressing the Indianhedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) in a simulated microgravity environment. MethodsThe 2nd generation BMSCs from rabbit were divided into 2 groups: the rotary cell culture system (RCCS) group and conventional group. Each group was further divided into the IHH gene transfection group (RCCS 1 group and conventional 1 group), green fluorescent protein transfection group (RCCS 2 group and conventional 2 group), and blank control group (RCCS 3 group and conventional 3 group). RCCS group cells were induced to differentiate into chondrocytes under simulated microgravity environment; the conventional group cells were given routine culture and chondrogenic induction in 6 well plates. During differentiation induction, the ELISA method was used to detect IHH protein expression and alkaline phosphatase (ALP) activity, and quantitative real-time PCR to detect cartilage and cartilage hypertrophy related gene expressions, and Western blot to detect collagen typeⅡ, agreecan (ANCN) protein expression; and methylene blue staining and Annexin V-cy3 immunofluorescence staining were used to observe cell slide. ResultsAfter transfection, obvious green fluorescence was observed in BMSCs under fluorescence microscopy in RCCS groups 1 and 2, the transfection efficiency was about 95%. The IHH protein levels of RCCS 1 group and conventional 1 group were significantly higher than those of RCCS 2, 3 groups and conventional 2, 3 groups (P < 0.05); at each time point, ALP activity of conventional 1 group was significantly higher than that of conventional 2, 3 groups (P < 0.05); ALP activity of RCCS 1 group was significantly higher than that of RCCS 2 and 3 groups only at 3 and 7 days (P < 0.05). Conventional 1 group expressed high levels of cartilage-related genes, such as collagen typeⅡand ANCN at the early stage of differentiation induction, and expressed high levels of cartilage hypertrophy-related genes, such as collagen type X, ALP, and Annexin V at the late stage (P < 0.05). RCCS 1 group expressed high levels of cartilage-related genes and low levels of cartilage hypertrophy-related genes at all stages. The expression of collagen typeⅡprotein in conventional 1 group was significantly lower than that of conventional 2 and 3 groups at 21 days after induction (P < 0.05); RCCS 1 group expressed high levels of collagen typeⅡand ANCN proteins at all stages (P < 0.05). Methylene blue staining indicated conventional 1 group was stained lighter than conventional 2 and 3 groups at 21 days after induction; while at each time point RCCS 1 group was significantly deeper than RCCS 2 and 3 groups. Annexin V-cy3 immunofluorescence staining indicated the red fluorescence of conventional 1 group was stronger than that of conventional 2 and 3 groups at each time point. The expression of red fluorescence in each RCCS subgroup was weak and there was no significant difference between the subgroups. ConclusionUnder the simulated microgravity environment, transfection of IHH gene into BMSCs can effectively promote the generation of cartilage and inhibit cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.
Objective To manufacture a poly (lactic-co-glycolic acid) (PLGA) scaffold by low temperature deposition three-dimensional (3D) printing technology, prepare a PLGA/decellularized articular cartilage extracellular matrix (DACECM) cartilage tissue engineered scaffold by combining DACECM, and further investigate its physicochemical properties. Methods PLGA scaffolds were prepared by low temperature deposition 3D printing technology, and DACECM suspensions was prepared by modified physical and chemical decellularization methods. DACECM oriented scaffolds were prepared by using freeze-drying and physicochemical cross-linking techniques. PLGA/DACECM oriented scaffolds were prepared by combining DACECM slurry with PLGA scaffolds. The macroscopic and microscopic structures of the three kinds of scaffolds were observed by general observation and scanning electron microscope. The chemical composition of DACECM oriented scaffold was analyzed by histological and immunohistochemical stainings. The compression modulus of the three kinds of scaffolds were measured by biomechanical test. Three kinds of scaffolds were embedded subcutaneously in Sprague Dawley rats, and HE staining was used to observe immune response. The chondrocytes of New Zealand white rabbits were isolated and cultured, and the three kinds of cell-scaffold complexes were prepared. The growth adhesion of the cells on the scaffolds was observed by scanning electron microscope. Three kinds of scaffold extracts were cultured with L-929 cells, the cells were cultured in DMEM culture medium as control group, and cell counting kit 8 (CCK-8) was used to detect cell proliferation. Results General observation and scanning electron microscope showed that the PLGA scaffold had a smooth surface and large pores; the surface of the DACECM oriented scaffold was rough, which was a 3D structure with loose pores and interconnected; and the PLGA/DACECM oriented scaffold had a rough surface, and the large hole and the small hole were connected to each other to construct a vertical 3D structure. Histological and immunohistochemical qualitative analysis demonstrated that DACECM was completely decellularized, retaining the glycosaminoglycans and collagen typeⅡ. Biomechanical examination showed that the compression modulus of DACECM oriented scaffold was significantly lower than those of the other two scaffolds (P<0.05). There was no significant difference between PLGA scaffold and PLGA/DACECM oriented scaffold (P>0.05). Subcutaneously embedded HE staining of the three scaffolds showed that the immunological rejections of DACECM and PLGA/DACECM oriented scaffolds were significantly weaker than that of the PLGA scaffold. Scanning electron microscope observation of the cell-scaffold complex showed that chondrocytes did not obviously adhere to PLGA scaffold, and a large number of chondrocytes adhered and grew on PLGA/DACECM oriented scaffold and DACECM oriented scaffold. CCK-8 assay showed that with the extension of culture time, the number of cells cultured in the three kinds of scaffold extracts and the control group increased. There was no significant difference in the absorbance (A) value between the groups at each time point (P>0.05). Conclusion The PLGA/DACECM oriented scaffolds have no cytotoxicity, have excellent physicochemical properties, and may become a promising scaffold material of tissue engineered cartilage.
Objective To explore the impact of basic fibroblast growth factor (bFGF) and parathyroid hormone-related protein (PTHrP) on early and late chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs) induced by transforming growth factor β1 (TGF-β1). Methods BMSCs were isolated from 3 healthy Japanese rabbits (2-month-old, weighing 1.6-2.1 kg, male or female), and were clutured to passage 3. The cells were put into pellet culture system and were divided into 5 groups according to different induce conditions: TGF-β1 group (group A), TGF-β1/bFGF group (group B), TGF-β1/21 days bFGF group (group C), TGF-β1/PTHrP group (group D), and TGF-β1/21 days PTHrP group (group E). At the beginning, TGF-β1 (10 ng/mL) was added to all groups, then bFGF and PTHrP (10 ng/mL) were added to groups B and D respectively; bFGF and PTHrP (10 ng/mL) were added to groups C and E at 21 days respectively. The gene expressions of collagen type I (Col I), Col II, Col X, matrix metalloproteinases (MMP)-13, and alkaline phosphatase (ALP) activity were detected once every week for 6 weeks. The 1, 9-dimethylmethylene blue (DMMB) staining was used to observe the extracellular matrix secretion at 6 weeks. Results The expression of Col I in groups C and E showed a significant downward trend after 3 weeks; the expression in group A was significantly higher than that in groups C and E at 4 and 5 weeks (P lt; 0.05), and than that in groups B and D at 3-6 weeks (P lt; 0.05); and significant differences were found between groups B and C at 3 and 4 weeks, and between groups D and E at 3 weeks (P lt; 0.05). After 3 weeks, the expressions of Col II and Col X in groups C and E gradually decreased, and were significantly lower than those in group A at 4-6 weeks (P lt; 0.05). Groups B and D showed no significant difference in the expressions of Col II and Col X at all time points, but there was significant difference when compared with group A (P lt; 0.05). MMP-13 had no obvious expression at all time points in group A; significant differences were found between group B and groups A, C at 3 weeks (P lt; 0.05); and the expression was significantly higher in group D than in groups A and E (P lt; 0.05). ALP activity gradually increased with time in group A; after 4 weeks, ALP activity in groups C and E obviously decreased, and was significantly lower than that in group A (P lt; 0.05); there were significant differences between groups B and C, and between groups D and E at 2 and 3 weeks (P lt; 0.05). DMMB staining showed more cartilage lacuna in group A than in the other groups at 6 weeks. Conclusion bFGF and PTHrP can inhibit early and late chondrogenic differentiation of BMSCs by changing synthesis and decomposition of the cartilage extracellular matrix. The inhibition is not only by suppressing Col X expression, but also possibly by suppressing other chondrogenic protein.
Objective To prepare the silk fibroin (SF)-chitosan (CS) scaffolds by adjusting the mass ratio between CS and SF, and test and compare the properties of the scaffolds at different mass ratios. Methods According to the mass ratios of 6 ∶ 4 (group A), 6 ∶ 8 (group B), and 6 ∶ 16 (group C) between SF and CS, CS-SF scaffolds were prepared by freeze-drying method, respectively. The material properties, porosity, the dissolubility in hot water, the modulus elasticity, and the water absorption expansion rate were measured; the aperture size and shape of scaffolds were observed by scanning electron microscope (SEM). Density gradient centrifugation method was used to isolate the bone marrow mesenchymal stell cells (BMSCs) of 4-week-old male Sprague Dawley rats. The BMSCs at passage 3 were seeded onto 3 scaffolds respectively, and then the proliferation of cells on the scaffolds was detected by MTS method. Results The results of fourier transform infrared spectroscopy proved that with the increased content of CS, the absorption peak of random coil/α helix structure (1 654 cm-1 and 1 540 cm-1) constantly decreased, but the absorption peak of corresponding to β-fold structure (1 628 cm-1 and 1 516 cm- 1) increased. The porosity was 87.36% ± 2.15% in group A, 77.82% ± 1.37% in group B, and 72.22% ± 1.37% in group C; the porosity of group A was significantly higher than that of groups B and C (P lt; 0.05), and the porosity of group B was significantly higher than that of group C (P lt; 0.05). The dissolubility in hot water was 0 in groups A and B, and was 3.12% ± 1.26% in group C. The scaffolds had good viscoelasticity in 3 groups; the modulus elasticity of 3 groups were consistent with the range of normal articular cartilage (4-15 kPa); no significant difference was found among 3 groups (F=5.523, P=0.054). The water absorption expansion rate was 1 528.52% ± 194.63% in group A, 1 078.22% ± 100.52% in group B, and 1 320.05% ± 179.97% in group C; the rate of group A was significantly higher than that of group B (P=0.05), but there was no significant difference between groups A and C and between groups B and C (P gt; 0.05). SEM results showed the aperture size of group A was between 50-250 μm, with good connectivity of pores; however, groups B and C had structure disturbance, with non-uniform aperture size and poor connectivity of pores. The growth curve results showed the number of living cells of group A was significantly higher than that of groups B and C at 1, 3, 5, and 7 days (P lt; 0.05); and there were significant differences between groups B and C at 3, 5, and 7 days (P lt; 0.05). Conclusion The CS-SF scaffold at a mass ratio of 6 ∶ 4 is applicable for cartilage tissue engineering.
Objective To review the recent research progress of the bioreactor biophysical factors in cartilage tissue engineering. Methods The related literature concerning the biophysical factors of bioreactor in cartilage tissue engineering was reviewed, analyzed, and summarized. Results Oxygen concentration, hydrostatic pressure, compressive force, and shear load in the bioreactor system have no unified standard parameters. Hydrostatic pressure and shear load have been in controversy, which restricts the application of bioreactors. Conclusion The biophysical factors of broreactor in cartilage tissue engineering have to be studied deeply.