Objective To investigate the expression of chemokine receptor CXCR7 and the relation between its expression and clinicopathologic characteristics in papillary thyroid carcinoma. Method The expressions of CXCR7 in 79 cases of papillary thyroid carcinoma and their paracancerous tissues,and 33 cases of benign thyroid lesion tissues were detected by immunohistochemistry. Results The positive expression rates of CXCR7 were 0(0/79),65.8%(52/79),and 30.3%(10/33) in the paracancerous tissues,papillary thyroid carcinoma tissues,and benign thyroid lesions tissues,respectively. The positive expression rate of CXCR7 in the papillary thyroid carcinoma tissues was significantly higher than that in the paracancerous tissues (P<0.05) or benign thyroid lesion tissues(P<0.05). The expression of CXCR7 was correlated with lymph node metastasis (P<0.05). Conclusion CXCR7 might take part in tumorigenesis,progression,and lymph node metastasis of papillary thyroid carcinoma.
Objective To explore the effect of dendritic cells (DCs) allergized by K-ras mutant peptide on expressions of chemokines CCL19, CCL22, and cytoskeletal protein fascin-1. Methods DCs were derived from peripheral blood in the presence of granuloceyte/macrophage-colony stimulating factor, interleukin (IL) -4 in vitro. The DCs were collected on day 7 after culture, and were divided into non-K-ras mutant peptide group (addition of RPMI 1604 culture solution 50 μg/ml) and K-ras mutant peptide group (addition of K-ras mutant peptide 50 μg/ml). Phenotype was identified by flow cytometry. The morphological structure was observed by scanning and transmission electron microscopies, respectively. The expressions of IL-12, CCL19, and CCL22 were tested continuously by enzyme-linked immunosorbent assay (ELISA). The expression of cytoskeletal protein fascin-1 was determined by Western blot. Results ①The expressions of CD1a, CD80, and CD86 after loading K-ras mutant peptide were higher than that before loading K-ras mutant peptide (Plt;0.01). ②The DCs with petal-like and branch-like profections after loading were observed under scanning electron microscopy; The DCs with irregular shapes, branch-like or burr-like were showed under transmission electron microscopy. ③The expressions of IL-12, CCL19, and CCL22 in the Kras mutant peptide group were higher than those in the non-K-ras mutant peptide group at different times (6, 12, 24, and 48 h) after loading Kras mutant peptide (Plt;0.01). ④The expression of fascin-1 in the K-ras mutant peptide group was also higher than that in the non-K-ras mutant peptide group (Plt;0.01). Conclusion K-ras mutant peptide can promote DC to mature and improve the expression of chemokines and cytoskeletal protein which will strengthen DC migration.
Objective To investigate the effects of histone modification on the expression of chemokines in alveolar epithelial typeⅡ cells ( AECⅡ) in a rat model of chronic obstructive pulmonary disease ( COPD) . Methods 20 SD rats were randomly assigned to a normal control group and a COPD group. The rat model of COPD was established by cigarette smoking. Lung histological changes were observed by HE staining. AECⅡ cells were isolated and identified by alkaline phosphatase staining and electron microscopic. The mRNA expressions of monocyte chemoattractant protein ( MCP) -1, IL-8, and macrophage inflammatory protein ( MIP) -2αwere detected by real-time quantitative PCR. The expression of histone deacetylase ( HDAC) 2 was measured by western blot. Chromatin immunoprecipitation ( ChIP) was used todetect H3 and H4 acetylation, and H4K9 methylation in the promoter region of chemokine gene. Results Compared with the control group, the mRNA expressions of MCP-1, IL-8, and MIP-2αin the COPD group increased 4. 48,3. 14, and 2. 83 times, respectively. The expression of HDAC2 protein in the COPD group wassignificantly lower than in the control group ( 0. 25 ±0. 15 vs. 0. 66 ±0. 15, P lt; 0. 05) . The expression of HDAC2 had a negative correlation with the gene expressions of IL-8, MCP-1, and MIP-2α( r = - 0. 960,- 0. 914, - 0. 928, respectively, all P lt;0. 05) . The levels of H3 and H4 acetylation were higher, and H4K9 methylation level was lower in the promoter region of chemokine gene in the COPD group compared with the control group ( all P lt; 0. 05) . Conclusions MCP-1, IL-8, and MIP-2α participate and promote the lung inflammatory response in COPD. HDAC2-mediated histone modification may play an important role in COPD inflammation.
Monocyte chemoattractant protein-1(MCP-1) is a cytokine which belongs to the CC chemokine family. Retinal pigment epithelium (RPE) cells, photoreceptors and microglial cells in the retina can secrete MCP-1. Physiological level of MCP-1 is important for preserving morphology of RPE and glial cells, as well as retinal function and gross morphology. MCP-1 is likely released from Müller glia and the RPE cells when retina under stress, and attracts microglia/macrophages to the sites of retinal damage, activates the microglia to ingest cell debris. MCP-1 has been found upregulated in the intraocular fluid of retina in patients and animal models with retinal detachment, posterior uveitis and age-related macular degeneration. The expression of MCP-1 may be response to retinal inflammation. Therefore, it is tempting to speculate that pharmacological targeting of MCP-1 may be a safe and viable strategy in treatment of retinal disease.
Diabetic retinopathy (DR) is one of the most common and serious diabetic complications, which is the main cause of vision loss in adults. The specific vascular and neuropathology mechanism of DR is not clear. It has been demonstrated that Inflammatory reaction might be take effects in the development and progression of DR. Monocyte chemoattractant protein-1 (MCP-1), as an important chemokine in the inflammatory response process, promotes chemotactic and activating factors, destroys the blood-retinal barrier, causes retinal vascular disease, and activates microglia, which is related to the severity of the disease. With further research on MCP-1, it is possible to use chemokines and their receptors as target cells to control or slow down the progression of DR by reducing or inhibiting the production of MCP-1 in diabetic patients in the early stages of the disease. This study can provide new ideas and new methods about preventing and treating DR.
Objective To observe the effects of stromal cellderived factor 1alpha; (SDF-1alpha;) in secondary neovascular glaucoma (NVG) of proliferative diabetic retinopathy (PDR). Methods The vitreous specimens from 25 PDR patients (31 eyes) were collected with 13 NVG eyes and non-NVG 18 eyes. The concentrations of SDF-1alpha; and vascular endothelial growth factor (VEGF) in those specimens were measured by enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVEC) were treated by different concentrations of SDF-1alpha;and vascular endothelial growth factor (VEGF) in vitro, and the formation of tube cavity-like structure, length of capillarylike structures and 5prime;-bromo-2prime;-deoxyuridine (BrdU) labeling of treated HUVEC were measured. Results The length of HUVEC tube-like and capillarylike structure formation in 10, 100, 1000 ng/ml SDF-1alpha; and 10 ng/ml VEGF groups were longer than that in the control group, the differences were statistically significant (P<0.01). The A value of BrdU labeling of 10, 100, 1000 ng/ml SDF-1alpha; and 10 ng/ml VEGF groups were increased than that in the control group, the differences were statistically significant (P<0.01). The vitreous levels of SDF-1alpha; and VEGF of NVG specimens were higher than those in the non-NVG group, the differences were statistically significant (P<0.01). Conclusions SDF-1alpha; may promote the migration and proliferation of vascular endothelium cells, and participate in the neovascularization process in NVG patients with PDR.
Objective To summarize the relationships between chemokines or chemokine receptors, especially CCL19/CCL21-CCR7 and CXCL12-CXCR4 axis and occurrence and development of gastric cancer. Methods Domestic and international publications online involving the relationships between chemokines, chemokine recepotors and gastric cancer in recent years were collected and reviewed. Results By regulating the microenvironment of the growth of gastric cancer, CCL19/CCL21-CCR7 played an important role in lymph node metastasis and CXCL12-CXCR4 axis played a key role in the development of peritoneal carcinomatosis. CCR7 might function as a specific prognostic marker for lymph node metastasis of gastric cancer. Blocking the CXCL12-CXCR4 axis might be useful for the future development of a more effective therapeutic strategy for gastric cancer involved in peritoneal dissemination. Conclusions Chemokines and chemokine receptors promote the evolution of gastric cancer in variable ways, so the mechanisms of which should be comprehended to provide a theoretical basis for the future treatment. As new therapeutic targets, chemokines and chemokine receptors have a prosperity for the clinic evaluation and treatment of gastric cancer.
ObjectiveBased on the rat in situ perfusion system, to explore the effect of up-regulating Chemokine (C-X-C motif) receptor 4 (CXCR4) expression on bone marrow neutrophils in modulating its ECC-related rapid release. MethodsTwelve SD rats were randomly divided into fucoidan perfusion group (F, n=6) and control group (C, n=6) after in situ perfusion system establishment. Rats in F group received perfusion of fucoidan solution (total volume 6 ml, 1 h) and C group received buffer only. Femurs from two groups were dissected after one-hour perfusion and bone marrow tissues were collected. The neutrophil CXCR4 expression in two groups were compared using flowcytometry. Eighteen SD rats were randomly divided into fucoidan perfusion group (F', n=6), fucoidan and AMD-3100 perfusion group (F+AMD3100, n=6) and control group (C', n=6) after in situ perfusion system establishment. Rats received desired interventions before stimulation from ECC plasma. After that, 40-min perfusions of buffer were added and total counts of neutrophil in perfusates were compared. ResultsThe percentages of CXCR4 (+) cell and CXCR4 expression fluorescence in F group were 4.71%±0.21% and 161.3±7.8 respectively while the values were 1.11%±0.11% and 58.4±6.5 respectively in C group. Values in F group were both significantly higher than those in C group (P<0.05). The total counts of neutrophil in perfusates from F' group, F+AMD3100 and C' group were 261 393.7±12 470.6, 872 635.2±10 430.6 and 818 675.2±10 708.8, respectively. Statistically differences were observed between each other (P<0.05). ConclusionBone marrow neutrophil CXCR4 expression of SD rat could be effectively up-regulated by perfusion of fucoidan within the in situ perfusion system. ECC-plasma-stimulated bone marrow neutrophil release in rat could be inhibited by fucoidan induced up-regulation of neutrophil CXCR4 expression, and this inhibition effect could be canceled by AMD-3100 intervention.
Objective The observe the effects of interferon-inducible protein-10 (IP-10) on proliferation, migration and capillary tube formation of human retinal vascular endothelial cells (HREC) and human umbilical vein endothelial cells (HUVEC). Methods The chemokine receptor (CXCR3) mRNA of HREC and HUVEC were quantified by reverse transcriptase polymerase chain reaction (RT-PCR). In the presence of the different concentrations of IP-10, the difference in proliferation capacity of HREC and HUVEC were analyzed by cell counting kit-8 (CCK-8) methods. Wound scratch assay and threedimensional in vitro matrigel assay were used for measuring migration and capillary tube formation of HREC and HUVEC, respectively. Results RT-PCR revealed both HREC and HUVEC expressed CXCR3. The proliferation of HREC in the presence of IP-10 was inhibited in a dosagedependent manner (F=6.202,P<0.05), while IP-10 showed no effect on the inhibitory rate of proliferation of HUVEC (F=1.183,P>0.05). Wound scratch assay showed a significant reduction in the migrated distance of HREC and HUVEC under 10 ng/ml or 100 ng/ml IP-10 stimulation (F=25.373, 23.858; P<0.05). There was no effect on the number of intact tubules formed by HREC in the presence of 10 ng/ml or 100 ng/ml IP-10. The number of intact tubules formed by HREC in the presence of 1000 ng/ml IP-10 was remarkably smaller. The difference of number of intact tubules formed by HREC among 10, 100, 1000 ng/ml IP-10 and nonintervention group was statistically significant (F=5.359,P<0.05). Conclusion IP-10 can inhibit the proliferation, migration and capillary tube formation ability of HREC and the migration of HUVEC.
ObjectiveTo investigate the relationship between the pathological and functional changes of the retina and the expression of monocyte chemoattractant protein (MCP)-1 after retinal laser injury in mice. MethodsA total of 116 C57BL/6 mice were randomly divided into the normal group (58 mice) and the injured group (58 mice). Retinal laser injuries were induced by Argon ion laser. At 1, 3, 7 days after laser injury, electroretinogram (ERG) responses were recorded to detect the function of the retina. Hematoxylin and eosin (HE) staining was performed to observe pathological changes. Quantitative real-time polymerase chain reaction (PCR) was performed to detect gene expression of MCP-1. Western blot was used to measure the protein expression of MCP-1. ResultsHE staining showed a progressive damage of the retinal structure. The results of ERG showed that the differences of dark-adaptive a wave (t=6.998, 9.594, 13.778) and b wave (t=12.089, 13.310, 21.989) amplitudes of 1, 3 and 7 day post-injury between normal group and injured group were statistically significant (P=0.000). At 1 day post-injury, the differences of light adaptive b wave amplitudes between the two groups were statistically significant (t=8.844, P=0.000). While the differences of light-adaptive a wave amplitudes were not (t=2.659,P=0.200). At 3, 7 days post-injury, the differences of a (t=3.076, 7.544) and b wave amplitudes (t=10.418, 8.485) between the two groups were statistically significant (P=0.000). In dark-adaptive ERG, the differences of a wave amplitudes between 1 day and 3 days (t=3.773), 1 day and 7 days (t=5.070) and b wave amplitudes between 1 day and 7 days (t=4.762) were statistically significant (P<0.01), while the differences of a wave amplitudes between the 3 days and 7 days (t=1.297) and b wave amplitudes between 1 day and 3 days (t=2.236), 3 day and 7 days (t=2.526) were not significant (P=0.660, 0.120, 0.060). In light-adaptive ERG, the differences of a wave amplitudes between 1 day and 7 days (t=2.992) and b wave amplitudes between 1 day and 3 days (t=3.570), 1day and 7 days (t=4.989) were statistically significant (P<0.05), while the differences of a wave amplitudes between 1 day and 3 days (t=0.516), the 3 days and 7 days (t=2.475) and b wave amplitudes between 3 days and 7 days (t=1.419) were not significant (P=1.000, 0.710, 0.070). Quantitative real-time PCR showed that the differences of MCP-1 gene expression at 1, 3 and 7 day post-injury between normal group and injured group were statistically significant (t=14.329, 16.861, 5.743; P<0.05). Western blot showed that the differences of MCP-1 protein expression at 1, 3 and 7 day post-injury between normal group and injured group were statistically significant (t=75.068, 54.145, 14.653; P<0.05). ConclusionIn the first 7 days after mice retinal laser injury, there are progressive pathological and functional damage of the retina, which might be correlated with MCP-1 expression.