Objective To investigate the possibility of differentiation of theisolated and cultured adipose-derived adult stem cells into chondrocytes, which is induced by the recombinant human bone morphogenetic protein 2 (rhBMP-2). Methods The rabbit adipose tissue was minced and digested by collagenase Type Ⅰ. The adposederived adult stem cells were obtained and then they were cultured inthe micropellet condition respectively in the rhBMP-2 group, the rhTGF-β1 group, the combination group, and the control group for 14 days. The differentiation of the adiposederived stem cells into chondrocytes was identifiedby the histological methods including HE, Alcian blue, Von kossa, and immunohistochemical stainings. Results After the continuous induction by rhBMP-2 and continuous culture for 14 days, the HE staining revealed a formation of the cartilage lacuna; Alcian blue indicated that proteoglycan existed in the extracellular matrix; the immunohistochemical staining indicated that collagen Ⅱ was in the cellular matrix; and Von kossa indicated that the adipose-derived stem cells couldnot differentiate into the osteoblasts by an induction of rhBMP-2. Conclusion In the micropellet condition, the adipose-derived adult stemcells can differentiate into the chondrocytes, which is initially induced by rhBMP-2. This differentiation can provide a foundation for the repair of the cartilage injury.
Objective To observe the biological characters of chondrocytes in articular loose body and to find out seeding cells for cartilage tissue engineering. Methods Samples from 5 loose body cartilages, 2 normal articular cartilages and 6 osteoarthritis articular cartilages were collected. Part of each sample’s cartilage was histologically studied to observe the chondrocytes distribution the morphologic changes by toluidine-blue staining, chondrocytes’ apoptosis by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL). The rest of each cartilage was digested and isolated by 0.25% trypsin and 0.2% collagenase Ⅱ, and then were cultivated in 10%DMEM. Their morphologic changes were observed 24h later.Comparison was made btween three cartilages. Results Compared with normal cartilage and osteoarthritis articular cartilage, the cells density was higher, their lacunars were larger, cells distribution was irregular, and apoptosis was more apparent in loose body cartilage. Conclusion The characters of chondrocytes from loose body is more like fibroblasts so they can not serve as seeding cells directly for cartilage tissue engineering.
OBJECTIVE: To study chondrogenesis of calcium alginate-chondrocytes predetermined shapes. METHODS: Chondrocytes isolated from ears of rabbit by type II collagenase digestion, and then were mixed with 1.5% solidium alginate solution. The suspension was gelled to create three spatial shapes as triangle, circle and quadrilateral by immersed into 2.5% CaCl2 for 90 minutes, and then was implanted into the subcutaneous pocket on the dorsum of the rabbit. Samples were harvested at 6 and 12 weeks after implantation. RESULTS: Gross examination of excised specimens at 6 and 12 weeks after implantation revealed the presence of new cartilage of approximately the same dimensions as the original construct. Histologic evaluation using hematoxylin and eosin stains confirmed the presence of cartilage nodules at 6 weeks after implantation. After 12 weeks, mature cartilage was observed and histologic analysis confirmed the presence of well formed cartilaginous matrix. CONCLUSION: Predetermined shapes neocartilage can be regenerated using calcium alginate as a carrier of chondrocytes in the bodies of immune animals.
OBJECTIVE: To study the feasibility of the formation of allogeneic tissue-engineered cartilage of certain shape in immunocompetent animal using the injectable biomaterial. METHODS: Fresh newborn rabbits’ articular cartilages were obtained under sterile condition (lt; 6 hours after death) and incubated in the sterile 0.3% type II collagenase solution. After digestion of 8 to 12 hours, the solution was filtered through a 150 micron nylon mesh and centrifuged, then the chondrocytes were washed twice with phosphate buffered saline (PBS) and mixed with the biomaterial to create a final cell density of 5 x 107/ml. The cell-biomaterial admixture was injected into rabbits subcutaneously 0.3 ml each point while we drew the needle back in order to form the neocartilage in the shape of cudgel, and the control groups were injected with only the biomaterial or the suspension of chondrocytes with the density of 5 x 10(7)/ml. After 4, 6, 8 and 12 weeks, the neocartilages were harvested to analyze. RESULTS: The new nodes could be touched subcutaneously after 2 weeks. In the sections of the samples harvested after 4 weeks, it was found that the matrix secreted and the collagen formed. After 6 weeks and later than that, the neocartilages were mature and the biomaterial was almost completely degraded. The cudgel-shaped samples of neocartilage could be formed by injection. In the experiment group, there was no obvious immune rejection response. On the contrary, there were no neocartilage formed in the control group. CONCLUSION: The injectable biomaterial is a relatively ideal biomaterial for tissue engineering, and it is feasible to form allogeneic tissue engineered cartilage of certain shape by injection in an immunocompetent animal.
ObjectiveTo summarize the research progress of pathological manifestations and mechanism of endochondral ossification in osteoarthritis (OA). MethodsThe literature about endochondral ossification, bone-cartilage remodeling in OA, and joints development was reviewed, analyzed, and summarized. ResultsChondrocyte hypertrophy and apoptosis, vascular invasion, replication of the tidemark, thickening calcified cartilage, and thinning superficial cartilage are the characteristics of cartilage degeneration in OA. Articular cartilage and growth plate are similar in structure, and cartilage degeneration in OA is similar to a process of endochondral ossification of the growth plate. ConclusionLoss of stability characterization from resting metabolic balance to a high conversion state of temporary cartilage in stimulation of abnormal mechanical stresses and cytokines would subsequently contributed to continual calcification and remodeling of articular cartilage, which may be the key link of the initiation and development of OA.
OBJECTIVE: To study the gap junction and phenotype of cultured chondrocyte of rabbit, and the gap junction between the chondrocytes in the same cartilage cavities in human femoral head articular cartilage. METHODS: CFDA-AM was added into the medium of the fifth passage of chondrocyte of rabbit in the 96-well plate. The fluorescent in spherical and fibroblast-like chondrocytes was detected separately. The recurrence of the fluorescent in accordant with time in 16 minutes was recorded after blanching the fluorescent with laser. And the fluorescent after blanching of chondrocyte in the cartilage cavities in the proliferative zone of articular cartilage of adult human femoral head was recorded, too. RESULTS: The average fluorescent of the single layer of the fibroblast-like chondrocyte was 83(ranged from 1 to 274), the highest was found in the spherical shaped cell (averaged 2,057, ranged from 340 to 3,538). The recurrence of the fluorescent after the blanching appeared only in the spherical chondrocyte, the gap junctions reappeared only in the spherical chondrocytes, as well as in the cells in the cartilage cavities in the articular cartilage of the human femoral head. CONCLUSION: The appearance of the gap junction is corresponded with the spherical shape, secretion of the cartilage matrix of the chondrocyte. There are gap junctions in the cells in the same cartilage cavities in the articular cartilage of the human femoral head, while no gap junctions in the isolated chondrocytes in the cartilage.
Objective To investigate the effect of collagen type I concentration on the physical and chemical properties of the collagen hydrogel, and to analyze the effect of different concentrations of collagen type I hydrogel on the phenotype and gene expression of the chondrocytes in vitro. Methods Three kinds of collagen hydrogels with concentrations of 12, 8, and 6 mg/ mL (C12, C8, and C6) were prepared, respectively. The micro-structure, compressive modulus, and swelling ratio of the hydrogels were measured and analyzed. The chondrocytes at 2nd passage were cocultured with three kinds of collagen hydrogels in vitro, respectively. After 1-day culture, the samples were stained with fluorescein diacetate (FDA) / propidium iodide (PI) and the cell activity was observed under confocal laser microscope. After 14-day culture, HE staining and toluidine blue staining were carried out to observe the histological morphology, and mRNA expressions of chondrocytes related genes (collagen type II, Aggrecan, collagen type I, collagen type X, Sox9) were determined by real-time fluorescent quantitative PCR. Results With the increase of collagen type I concentration from 6 to 12 mg/mL, the physical and chemical properties of the collagen hydrogels changed significantly: the fiber network became dense; the swelling ratios of C6, C8, and C12 were 0.260 ± 0.055, 0.358 ± 0.072, and 0.539 ± 0.033 at 192 hours, respectively, showing significant differences among 3 groups (P lt; 0.05); and the compression modulus were (4.86 ± 0.96), (7.09 ± 2.33), and (11.08 ± 3.18) kPa, respectively, showing significant differences among 3 groups (P lt; 0.05). After stained with FDA/PI, most cells were stained green, and few were stained red. The histological observation results showed that the chondrocytes in C12 hydrogels aggregated obviously with b heterochromia, chondrocytes in C8 hydrogels aggregated partly with obvious heterochromia, and chondrcytes in C6 hydrogels uniformly distributed with weak heterochromia. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of collagen type II and Aggrecan were at the same level in C12, C8, and C6; the expressions of collagen type I, Sox9, and collagen type X were up-regulated with the increase of collagen type I hydrogels concentration, and the expressions were the highest at 12 mg/mL and were the lowest at 6 mg/mL, showing significant differences among 3 groups (P lt; 0.05). Conclusion Increasing the concentration of collagen hydrogels leads to better mechanical properties and higher shrink-resistance, but it may induce the up-regulation of cartilage fibrosis and hypertrophy related gene expression.
Objective To investigate the feasibil ity and effect of inducing adi pose-derived stem cells (ADSCs) treated with growth differentiation factor 5 (GDF-5) to undergo chondrogenic differentiation in vitro. Methods Six healthy Japanese rabbits aged 3 months (2-3 kg) of clean grade were chosen, irrespective of sex. ADSCs were isolated and cultured with collagenase digestion, then were detected and identified by vimentin immunohistochemistry and CD44, CD49d, CD106immunofluorescence staining. ADSCs at passage 3 were used and the cell density was adjusted to 1 × 106/mL, then the ADSCs were treated with 0, 10, 100 ng/mL GDF-5 and common cultural medium, respectively. The morphology changes of the induced ADSCs were observed by inverted contrast phase microscope and their growth state were detected by MTT. The mRNA quantities of Col II and proteoglycan expressed by the induced ADSCs were detected with RT-PCR. The Col II proteoglycan synthesized by the induced ADSCs were detected with alcian blue staining, toluidine blue staining, immunohistochemistry staining, and Western blot method. Results ADSCs mostly presented small sphere, fusiform and polygon shape with positive expression of CD44 and CD49d and negative expression of CD106 and vimentin. The ADSCs treated with 100 ng/mL GDF-5 presented sphere or sphere-l ike change and vigorous prol iferation. The mRNA quantities of Col II and proteoglycan synthesized by the induced ADSCs treated with 0, 10, 100 ng/mL GDF-5 and common cultural medium increased in a dose-dependent manner at 7 days. There were significant differences among all the groups (P lt; 0.05), except that no significant difference was evident between the 0 ng/mL group and the 10 ng/mL group (P gt; 0.05). When ADSCs were treated with 100 ng/mL GDF-5 for 14 days, the Col II and the mRNA and protein quantities of ptoteoglycan reached the peak, and the results of alcian blue, toluidine blue and Col IIimmunohistochemistry staining were positive. Conclusion ADSCs treated with certain concentration of GDF-5 have higher expression of Col II and proteoglycan and possess partial biological function of chondrocyte.
Objective To explore the effect of tissue engineered cartilage reconstructed by using sodium alginate hydrogel and SIS complex as scaffold material and chondrocyte as seed cell on the repair of full-thickness articular cartilage defects. Methods SIS was prepared by custom-made machine and detergent-enzyme treatment. Full-thickness articularcartilage of loading surface of the humeral head and the femoral condyle obtained from 8 New Zealand white rabbits (2-3weeks old) was used to culture chondrocytes in vitro. Rabbit chondrocytes at passage 4 cultured by conventional multipl ication method were diluted by sodium alginate to (5-7) × 107 cells/mL, and then were coated on SIS to prepare chondrocyte-sodium alginate hydrogel-SIS complex. Forty 6-month-old clean grade New Zealand white rabbits weighing 3.0-3.5 kg were randomized into two groups according to different operative methods (n=20 rabbits per group), and full-thickness cartilage defect model of the unilateral knee joint (right or left) was establ ished in every rabbit. In experimental group, the complex was implanted into the defect layer by layer to construct tissue engineered cartilage, and SIS membrane was coated on the surface to fill the defect completely. While in control group, the cartilage defect was filled by sodium alginate hydrogel and was sutured after being coated with SIS membrane without seeding of chondrocyte. General condition of the rabbits after operation was observed. The rabbits in two groups were killed 1, 3, 5, 7, and 9 months after operation, and underwent gross and histology observation. Results Eight rabbits were excluded due to anesthesia death, wound infection and diarrhea death. Sixteen rabbits per group were included in the experiment, and 3, 3, 3, 3, and 4 rabbits from each group were randomly selected and killed 1, 3, 5, 7, and 9 months after operation, respectively. Gross observation and histology Masson trichrome staining: in the experimental group, SIS on the surface of the implant was fused with the host tissue, and the inferface between them disappeared 1 month after operation; part of the implant was chondrified and the interface between the implant and the host tissue was fused 3 months after operation; the implant turned into fibrocartilage 5 months after operation; fiber arrangement of the cartilage in theimplant was close to that of the host tissue 7 months after operation; cartilage fiber in the implant arranged disorderly andactive cell metabol ism and prol iferation were evident 9 months after operation. While in the control group, no repair of thedefect was observed 9 months after operation. No obvious repair was evident in the defects of the control group within 9months after operation. Histomorphometric evaluation demonstrated that the staining intensity per unit area of the reparative tissue in the defect of the experimental group was significant higher than that of the control group at each time point (P lt; 0.05), the chondrification in the experimental group was increased gradually within 3, 5, and 7 months after operation (P lt; 0.05), and it was decreased 9 months after operation comparing with the value at 7 months after operation (P lt; 0.05). Conclusion Constructed by chondrocyte-sodium alginate hydrogel-SIS in complex with surficial suturing of SIS membrane, the tissue engineered cartilage can in-situ repair cartilage defect, promote the regeneration of cartilage tissue, and is in l ine with physiological repair process of articular cartilage.
Objective To establish a kind of gene therapy method of rheumatoid arthritis, to construct the interleukin-18-PE38 fusion gene expression vectorand to explore the expression of the fusion gene in the chondrocytes and 3T3 cells. Methods Interleukin-18-PE38 fusion gene was cleaved from plasmid PRKL459k-IL-18-PE38 by restriction enzyme digestion,then linked with vectors PsecTag2B and transformed into competence bacteria, positive clones were selected and confimed by restrictive enzyme(EcoRI) digestion assay. The rearrangement plasmid PsecTag2B-IL-18-PE38 was transfected into 3T3 cells and mouse chondrocytes by liposome protocol(experimental group),null vector was used as negative control, and the transient expression was identified by fluorescence immunocytochemical assay. Results Restrictive enzymes digestion analysis revealed thatthe length of theinterleukin-18-PE38 fusion gene was 6 000 bp. Fluorescence immunocytochemical method showed that fluorescence intensity of the experimental group is b,whilefluorescence intensity of the control group is weak. Conclusion the eukaryoticexpression vector PsecTag2B-IL-18-PE38 is established successfully which canbeexpressed in the 3T3 cells and mouse chodrocytes. Our results lay a foundationfor the further investigation for rheumatoid arthritis therapy.