The therapeutic effect of anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) was determined by a number of factors. Comprehensive thorough analysis of clinical features, imaging results and treatment response can predict the potential efficacy and possible vision recovery for the patient, and also can optimize the treatment regime to make a personalized therapy plan. Precise medicine with data from genomics, proteomics and metabolomics study will provide more objective and accurate biology basis for individual precise treatment. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy, to achieve individualized precise diagnosis and treatment, to improve the therapeutic outcome of nAMD.
Since anti-vascular endothelial growth factor (VEGF) therapy has recently become the first-line treatment of wet age related macular degeneration in China, as well as retinopathy of prematurity, neovascular glaucoma and macular edema secondary to diabetic retinopathy or retinal vein occlusion in other countries. It is worth thinking about that how to perform anti-VEGF treatment properly to benefit more patients. We reviewed the fields of clinical researches to explore the best role of anti-VEGF treatment in prevention and treatment of retinal disease in future.
For choroidal neovascularization (CNV) secondary to pathological myopia, intravitreal injection of anti-VEGF has been widely used in clinic and achieved good outcome. However, due to the differences in the demographic characteristics, stages of disease progression and treatment procedure of CNV, the prognosis of the disease is variable. Complete ellipsoid band, smaller baseline choroidal neovascularization and better baseline vision are important predictors of good outcome of anti-vascular endothelial growth factor treatment. Chorioretinal atrophy or complications related to pathologic myopia indicate a poor prognosis. The influence of age, race, previous photodynamic therapy and early treatment on the prognosis of treatment need to be further studied.
According to the best corrected visual acuity and the morphological changes of the macular fovea, responses to the neovascular age-related macular degeneration (nAMD) who receive anti-vascular endothelial growth factor (VEGF) therapy show large variability, including poor and non-responders. Various factors will be reviewed to account for poor and non-response to anti-VEGF therapy, such as the related susceptibility genes, factors related with the development of choroidal neovascularization and morphologic parameters, pharmacokinetics and tachyphylaxis. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy to improve the therapeutic outcome of nAMD.
Objective To observe the efficacy and safety of intravitreal injection of Ranibizumab(Lucentis) on exudative age-related macular degeneration (AMD). Methods To analyze retrospectively the clinical data of 56 patients with exudative AMD, which was diagnosed by examination of ETDRS charts, color fundus photograph, fluorescein angiography(FFA) or indocyanine green angiography(ICGA) and optical coherence tomography(OCT), were underwent intravitreal injection Lucentis 0.5 mg. Before the treatment, the ETDRS charts letter of 56 eyes was 25.1; choroidal neovascularization(CNA) was leaky which examined by FFA and ICGA; the average thickness of retina was 303.45 mu;m. Ranibizumab injection therapeutic times were 2.8, the average therapeutic times were 3.1. Follow-up time was 6-12 months (mean 8.7 months). Visual acuity (ETDRS charts letter), retinal thickness, leakage of CNV and operative complications before and after the treatment were analyzed. Results At the end of the follow-up period, the mean letter of ETDRS charts was 38.5, increased 13.4 letters (P<0.01), the ETDRS charts improved 15 or more letters in 22 eyes (39.3%), decreased more than 15 letters in 2 eyes (3.6%); the foveal thickness on OCT images were 303.45 mu;m before treatment and 191.35 mu;m a fter treatment, decreased significantly (P<0.00); FFA and/ or ICGA showed CNV complete closure in 12 eyes (21.4%), partial closure in 33 eyes (58.9%), no change in 9 eyes (16.1%) and new CNV in 1 eye (1.8%); Slight complications after operation disappeared during one week. Conclusion Intravitreal injection of Ranibizumab for exudative AMD was well tolerated, with an improvement in VA, FFA or ICGA , and OCT. (Chin J Ocul Fundus Dis,2008,24:160-163)
Wet age-related macular degeneration (wAMD) is caused by choroidal neovascularization (CNV), which occurs when the choroidal new capillaries reach the RPE layer and photoreceptor cell layer through the ruptured Bruch membrane, leading to neovascularization bleeding, leakage, and scarring. In view of the important role of VEGF in the development of CNV, targeted therapy with various intraocular anti-VEGF drugs is the first-line treatment for wAMD. However, the efficacy of anti-VEGF drugs in the treatment of wAMD is affected by a variety of factors, and some patients still have problems such as unresponsiveness, drug resistence, tachyphylaxis, long-term repeated injections, and severe adverse effects. It is the direction of future researches to deeply explore the physiological and pathological process of wAMD, find the cause of CNV formation, and seek better therapies.
Objective To observe the baseline characteristics and visual outcomes after two years follow-up of exudative age-related macular degeneration (AMD) patients treated with ranibizumb. Methods Forty-four eyes of 44 patients with exudative AMD were enrolled into this retrospective study, 19 were men and 25 were women. The mean age was 78 years (range 64 – 92 years). All patients were underwent best corrected visual acuity (BCVA, Early Treatment of Diabetic Retinopathy Study), fundus color photography, fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA) and optical coherence tomography (OCT). The mean BCVA was (50.36±14.43) letters, the mean central foveal thickness (CFT) was (291.95±82.19) μm, and the fluorescence leakage area of choroidal neovascularization (CNV) was (7.61±5.84) mm2. All patients received three initial intravitreous injection of ranibizumb (IVR) and were retreated with monthly IVR when needed. The mean follow up time was 25.6 months (range 24 – 29 months). On 1, 2, 3, 6, 12, 18 and 24 months after treatment, BCVA and OCT were repeated. On 3, 6, 12, 18 and 24 months after treatment, FFA and ICGA were repeated. The change of BCVA, CFT and fluorescence leakage area of CNV were observed. The association of baseline characteristics and two year visual outcomes were analyzed. Results On 1, 2, 3, 6, 12, 18 and 24 months after treatment, the BCVA were improved significantly (t= −1.89, −3.51, −4.61, −4.04, −5.77, −4.69;P<0.05), the CFT were decreased significantly (t=1.51, 2.30, 3.40, 3.28, 3.54, 3.88, 3.73;P<0.05). On 3, 6, 12, 18 and 24 months after treatment, the fluorescence leakage area of CNV were reduced significantly (t=2.12, 2.90, 3.51, 4.12, 4.06;P<0.05). The lower baseline BCVA, the more improved after treatment. The BCVA improvement degree has a negative relationship with baseline BCVA and fluorescence leakage area of CNV (r=0.505, −0.550;P<0.05), but no correlation with baseline CFT (r=0.210,P>0.05). Conclusion Two year visual outcomes of exudative AMD patients treated with ranibizumb is negative correlated with baseline BCVA and fluorescence leakage area of CNV, but not correlated with baseline CFT.
Objective To evaluate the clinical efficacy of intravitreal injections of antivascular endothelial growth factor monoclonal antibody ranibizumab in choroidal neovascularization (CNV) secondary to pathologic myopia (PM). Methods This is a prospective, uncontrolled, open-label study. 34 eyes of 34 patients with CNV secondary to PM were included in the study. All affected eye were treated with intravitreal ranibizumab 0.05 ml (10 mg/ml). Before the injection, bestcorrected visual acuity of early treatment of diabetic retinopathy study (ETDRS), noncontact tonometer, ophthalmoscope, fundus photography, fundus fluorescein angiograph (FFA) and optical coherence tomography (OCT) examination were necessary. The initial average letters of ETDRS acuity were 33.85plusmn;14.67, range from 0 to 69. The initial average central macular thickness (CMT) was(293.41plusmn;79.45) m, range from 210 m to 543 m. The patients were followed up for 3 to 12 months. Best-corrected visual acuity, OCT and ophthalmoscope examination were assessed monthly. If necessary, FFA was used. The letters of ETDRS acuity and CMT were compared before and after treatment. Results All eyes received an average of 1.68 injections, the final vision of follow-up increased (13.50plusmn;9.94) letters than before (t=7.92,P=0.00), CMT decreased (71.14plusmn;72.26) m (t=4.62,P=0.00). There were no systemic or ocular serious side effects during the follow up. Conclusion Intravitreal ranibizumab for pathologic myopia choroidal neovascularization showed visual acuity improvement, retinal thickness reduction and safety.
Objective To investigate the effect of photodynamic therapy (PDT) combined with intravitreal bevacizumab on wet age-related macular degeneration (AMD). Methods In this retrospective study, 34 eyes (28 cases) diagnosed with wet AMD received PDT combined intravitreal injection of bevacizumab, including 25 eyes with classic CNV and 9 eyes with minimally classic CNV by fluorescein angiography; On optical coherence tomography (OCT), 23 eyes showed intraretinal fluid (IRF) and 11 eyes presented subretinal fluid (SRF). After signing informed consent, all patients underwent initial standard PDT followed by intravitreal bevacizumab (1.25 mg) within succeeding 3 to 7 days. Best corrected visual acuity (BCVA) and OCT with routine eye examinations were evaluated monthly. Additional bevacizumab (1.25 mg) was injected intravitreally if new or increasing fluid appreciated on OCT, or BCVA lowered more than 5 letters even with stabilized fluid. Injection was discontinued if no fluid was showed on OCT (quot;dry macularquot;), or BCVA was stabilized even with fluid after two consecutive injections. BCVA and central retinal thickness (CRT) were analyzed and compared between baseline and 6 month follow-up. The correlation between parameters such as baseline BCVA, greatest linear dimension (GLD), type of CNV, SRF or IRF and posttreatment BCVA will be analyzed. The injection number of bevacizumab and complications were recorded. Results Compared to baseline, BCVA improved (9.4plusmn;10.2) letters and reach 44.9plusmn;21.3 letters (t=5.438,P<0.01) and CRT decreased (184.6plusmn;214.6) mu;m (t=4.810,P<0.01) at 6 month visit. The average of injection number was 1.9plusmn;0.9 (including initial injection of combination therapy). With multiple lineal regression analysis, only baseline BCVA correlated to posttreatment BCVA at 6 month visit (r=0.802.P<0.01). The type of CNV, GLD, SRF or IRF on OCT and CRT at baseline were not associated to post-treatment BCVA (r=0.053, -0.183, 0.139 and 0.053, respectively.P>0.05). BCVA of eyes with SRF (14.7 letters) increased more than eyes with IRF (6.9 letters) on OCT (t=-2.207,P=0.035). The change of BCVA after treatment (t=-0.076), change of CRT (t=-1.028) and number of injections (Z=-1.505) were not different between classic CNV and minimally classic CNV (P>0.05). The change of CRT (t=-0.020) and number of injections (Z=-0.237) did not present difference between SRF and IRF (P>0.05). The change of BCVA (t=1.159) and number of injections (Z=-1.194) were not correlated to whether residual fluid or not at 6 month visit (P>0.05). No severe complications were noticed during follow-up.Conclusion For wet AMD patients, PDT combined intravitreal bevacizumab could improve visual acuity, reduce retinal thickness and control CNV progress in a short-term.
Choroidal neovascularization (CNV) is the key characteristic of neovascular age-related macular degeneration (nAMD), and the effective therapy is intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents based on clinical and basic research. In the meantime the challenge is how to further improve the inhibiting effect for CNV and visual function of anti-VEGF treatment on nAMD. The new strategy and drug delivery devices for anti-VEGF treatment will optimize the clinical scheme. From bench to bedside, the research on targeted treatment of angiogenesis brings the bloom of nAMD medical therapy.