Objective To explore the effect of connective tissue growth factor on the pathogenesis of hypertrophic scar and keloid tissue. Methods The content of hydroxyproline was determined and the expression of connective tissue growth factor gene was detected by the reverse transcription-polymerase chain reaction and image analysis technique in 5 normal skins, 15 hypertrophic scars and 7 keloid tissues. Results The contents of hydroxyproline in the hypertrophic scar(84.10±1.76) and keloid tissue (92.38±2.04) were significantly higher than that of normal skin tissue (26.52 ± 4.10) (P lt; 0.01). The index of connective tissue growth factor mRNA in the hypertrophic scar (0.78 ± 0.63) and keloid tissue (0.84 ± 0.04) were higher than that of normal skin tissue ( 0.09 ± 0.25) (P lt; 0.01). Conclusion Connective tissue growth factor may play an important role in promoting the fibrotic process of hypertrophic scar and keloid tissue.
Objective To investigate the effect of cryopreservation (CP) on the expression of connective tissue growth factor (CTGF) in the renal tubular epithel ial cells. Methods A total of 40 male Wistar rats (weighing 230-250 g) were used in this study. En bloc removal with in situ cooling both kidneys and hypertonic citrate adenine preservation solution were adopted. The rat kidney was be preserved 0, 12, 24, 36 and 48 hours at 0-4℃ (n=8), respectively. The expression of CTGF of renal tubularepithel ial cells was detected by using immunohistochemistry and in situ hybridization analysis. Results The expression of CTGF was less in CP 0 hour group and CP 12 hours group, the positive unit (PU) values of CTGF protein were 5.91 ± 2.30 and 5.57 ± 2.40 (P gt; 0.05), respectively, and the PU values of CTGF mRNA were 6.24 ± 2.79 and 6.51 ± 2.43 (P gt; 0.05), respectively. The PU values of CTGF protein increased at CP 24 hours group (10.25 ± 2.92), CP 36 hours group (14.31 ± 2.83) and CP 48 hours group (18.11 ± 3.94, P lt; 0.05), respectively, and the PU values of CTGF mRNA increased at CP 24 hours group (15.24 ± 3.95), CP 36 hours group (19.20 ± 4.73) and CP 48 hours group (23.09 ± 4.40, P lt; 0.05), respectively; showing significant differences when compared with CP 0 hour group and CP 12 hours group (P lt; 0.05). Conclusion CTGF expression may increase with severe cold ischemia injury, and might play an important role in regeneration and repair of renal tubular epithel ial cell injury.
Objective To observe the influence of the transforming growth factor β1(TGF-β1) on the denervated mouse musclederived stem cells(MDSCs) producing the connective tissue growth factor(CTGF)at different time points in vitro. Methods MDSCs from the primarycultureof the denervated mouse skeletal muscle were isolated and purified by the preplate technique, and they were identified before the culture and after the culturein vitro with TGF-β1 (10 ng/ml) for 24 hours. Then, MDSCs were randomlydivided into 6 groups (Groups A, B, C, D, E and F) according to the different time points, and were cultured in vitro with TGF-β1 (10 ng/ml) for 0, 3, 6, 12, 24 and 48 hours, respectively. The levels of CTGF mRNA in MDSCs were measured by the real time RT-PCR and the expression of CTGF protein was detected by the CTGF Western blot. Results The immunohistochemistry revealed that before the adding of TGF-β1, MDSCs highly expressed Sca-1, with a positivityrate of 96%; however, after the adding of TGF-β1, the positive expression of Sca-1 decreased greatly, with a negativity rate gt;99%. The Western blot test showed that the ratios of CTGF to the average absorbance of βactin in Groups A-F were 0.788±0.123, 1.063±0.143, 2.154±0.153, 2.997±0.136, 3.796±0.153 and 3.802±0.175, respectively. In Groups AD,the absorbance increased gradually, with a significant difference between the abovementioned groups (Plt;0.05). However, in Groups D-F, there was no significant difference between the groups as the promotive tendency became less significant (P>0.05). The RT-PCR test showed that the △Ct values in GroupsA-F were 1.659±0.215, 1.897±0.134, 2.188±0.259, 2.814±0.263,2.903±0.125 and 3.101±0.186, respectively. In Groups A-D, the increase in the △Ct value was gradual, but the differences were significant between the groups (Plt;0.05). But in Groups E and F, the promotive tendency became less significant(Pgt;0.05). Conclusion TGF-β1 can promote the production of CTGF inthe mouse MDSCs cultured in vitro and the time-dependent relation exists for 3-12 hours.
Objective To investigate the effects of matrine on cell proliferation and expression of connective tissue growth factor( CTGF) and hypoxia inducible factor-1α( HIF-1α) of human lung fibroblast ( WRC-5) in normoxia ( 21% O2, 74% N2 , 5% CO2 ) and hypoxia ( 1% O2, 94% N2 , 5% CO2 )conditions. Methods MRC-5 cells were cultured and divided into differrent groups interfered with different dose of Matrine ( final concentration of 0 ~3. 2 mmol / L) in normoxia or hypoxia for 24 h. Cells were dividedinto 8 groups according to culture conditions, ie. normoxiagroup( N0 group) , normoxia + matrine 0. 2 mmol / L group( N0. 2 group) , normoxia + matrine 0. 4 mmol / L group( N0. 4 group) , normoxia + matrine 0. 8 mmol / L group( N0. 8 group) , hypoxia group( H0 group) , hypoxia + matrine 0. 2 mmol /L group( H0. 2 group) , hypoxia +matrine 0. 4 mmol /L group( H0. 4 group) , and hypoxia + matrine 0. 8 mmol / L group( H0. 8 group) . The MTT assay was used to measure the cell proliferation activity. Western-blot assay was used to examine the expression of CTGF and HIF-1α. Results Hypoxia promoted the cell proliferation in all groups( P lt;0. 05) .Matrine inhibited the proliferation of WRC-5 cells in a concentration-dependent manner in hypoxia or normoxia conditions( P lt;0. 05) . The expression of CTGF andHIF-1αwas lower in normoxia and higher in hypoxia( P lt;0. 01) . Matrine inhibited the expression of CTGF and HIF-1αin a concentration-dependent manner in hypoxiaand normoxia( P lt;0. 05) . Conclusion Matrine can inhibit the cell proliferation and the expression of CTGF and HIF-1αof WRC-5 cells in normoxia and hypoxia in a concentration-dependent manner.
ObjectiveTo investigate the role of transforming growth factor β1(TGF-β1) and connective tissue growth factor (CTGF) in pathogenesis and progression of human intervertebral disc degeneration by detecting the expressions of these two factors in different degrees of degenerative discs. MethodsThe lumbar intervertebral discs were collected from 33 patients with lumbar disc herniation and 12 patients with lumbar vertebral fracture between November 2012 and April 2013.All samples were observed under the microscope after HE staining,and then were divided into different subgroups according to the degenerative degree.The expressions of TGF-β1 and CTGF were detected by Western blot. ResultsAccording to the pathological features,10 discs were defined as normal discs,10 as mild degenerative discs,9 as moderate degenerative discs,and 16 as severe degenerative discs.The histological observation showed that rounded nucleus pulposus cells with similar size evenly distributed in the cartilage-like matrix,and no hyperplastic collagenous fiber was seen in normal discs;mild degenerative discs characterized by slightly larger nucleus pulposus cells in the matrix,but cells did not decrease,a small quantity of inflammatory cells infiltrated in the matrix,hyperplasia of collagenous fiber was not seen;most of the nucleus pulposus cells became bigger,some showed a bulb form,the number of nucleus pulposus cells was significantly reduced,low grade hyperplasia of collagenous fiber emerged in the matrix,new vessels and inflammatory cells were both found in some specific areas of discs in moderate degenerative discs;there was no nucleus pulposus cells in the matrix of severe degenerative discs,the hyperplasia of collagenous fiber was obvious.The relative expression of TGF-β1 in 3 degeneration discs was significantly higher than that in normal discs (P<0.05),and the expression of TGF-β1 was significantly higher in severe degenerative discs than in moderate and mild degenerative discs (P<0.05),but no significant difference between moderate and mild degenerative discs (P>0.05).The relative expression of CTGF in moderate and severe degeneration discs was significantly higher than that in normal discs (P<0.05);and the expression of CTGF in mild degenerative discs was higher than that in normal discs,but there was no significant difference (P>0.05);and significant difference in CTGF expression was found among 3 degeneration discs (P<0.05). ConclusionThe expressions of TGF-β1 and CTGF are closely related to the degree of human lumbar disc degeneration,these two factors may play an important role in promoting lumbar intervertebral disc degeneration.
ObjectiveTo construct the connective tissue growth factor (CTGF) recombinant interference vector (shRNA) and observe its inhibitory effect on the expression of endogenous CTGF in retinal vascular endothelial cells. Methods The human CTGF shRNA was constructed and the high-titer CTGF shRNA lentivirus particles was acquired via three-plasmid lentivirus packaging system to infect retinal vascular endothelial cells. The optimal multiplicity and onset time of lentivirus infection were identified by tracing down the red florescent protein in interference vector. The cells were classified into three groups: blank control group, infection control group and CTGF knockdown group. The differences in cells migrating ability was observed through Transwell allay. The mRNA and protein expression of CTGF, fibronectin, α-smooth muscle actin (α-SMA) and collagen Ⅰ (Col Ⅰ) were quantified through real-time PCR testing and Western blot system. Data between the three groups were examined via one-way analysis of variance. ResultsThe result showed that an optimal multiplicity of 20 and onset time of 72 hours were the requirements to optimize lentivirus infection. Transwell allay result showed a contrast in the number of migrated cells in the CTGF knockdown group and that in the blank control group and infection control group (F=20.64, P=0.002). Real-time PCR testing showed a contrast in related gene expression (CTGF, fibronectin, α-SMA and Col Ⅰ) in the CTGF knocked-down group and that in the blank control group and infection control group (F=128.83, 124.44, 144.76, 1 374.44; P=0.000, 0.000, 0.000, 0.000). Western blot system showed the statistical significance of the contrasted number of related protein expression (CTGF, fibronectin, α-SMA and Col Ⅰ) in the knockdown group and that in the blank control group (F=22.55, 41.60, 25.73, 161.68; P=0.002, 0.000, 0.001, 0.000). ConclusionThe success in producing CTGF shRNA lentivirus particle suggests that CTGF shRNA lentivirus can effectively knock down CTGF expression.
Objective To explore the role of chronic ethanol ingestion in pulmonary fibrosis. Methods Twenty SD rats were randomly divided into a control group (n=10) and an ethanol group ( n=10) , and fed with quantitative non-ethanol and ethanol Lieber-DeCarli liquid diet every day respectively. All rats were sacrificed after 8 weeks. The morphological changes and collagen deposition of lung tissue were observed under light microscope by HE and Masson staining. Levels of glutathione (GSH) and hydroxyproline (HYP) in lung tissues were measured by colorimetric method. The content of connective tissue growth factor (CTGF) in lung tissue was detected by ELISA. Results Compared with the control group, varied degrees of alveolar and alveolar septal infiltration of inflammatory cells can be shown in the ethanol group, and also some alveolar wall damage or collapse.Masson staining showed that the ethanol group has more significant deposition of collagen fibers in alveolar interstitumthan the control group. The content of GSH in rat lung tissue reduced, but the contents of HYP and CTGF increased in the ethanol group compared with the control group [ GSH( mg/g) :0.08±0.04 vs. 0.22±0.14, HYP(mg/g) : 0.57±0.15 vs. 0.40 ± 0.09, CTGF(ng/mL) :306.57±46.86 vs. 134.02±79.82, Plt;0.05] . Conclusions Lieber-DeCarli ethanol liquid diet can establish a rat model of chronic ethanol ingestion. Lung injury and pulmonary fibrosis in rats can be induced by chronic ethanol ingestion. Ethanol may be one of the causes of the pulmonary fibrosis.
Objective To observe the effects of different doses of atorvastatin on bleomycin-induced pulmonary fibrosis in rats. Methods Seventy-five healthy female SD rats were randomly divided into five groups ( 15 rats in each group) , ie. a normal group , a model group, a 10 mg/ kg atorvastatin-treated group, a 20 mg/ kg atorvastatin-treated group, and a 40 mg/ kg atorvastatin-treated group. The rats in the model group and treatment groups were instilled with bleomycin in trachea( 5 mg/kg) , and the normal group were instilled with equal volume of normal saline. The treatment groups were gastric gavaged with different doses of atorvastatin each day from2 nd day on after instillation, and the normal group and model group were gavaged with normal saline. Blood samples were obtained from abdominal aorta in five rats in each group and blood gas analysis was performed on1st week, 2nd week and 4th week respectively after BLM instillation. Then the animals were killed and lung tissue samples were harvested for histopathology study. HE and Masson staining were used to determine the extent of alveolus inflammation and pulmonary fibrosis respectively.Histoimmunochemical stain were used to determine the protein levels of transforming growth factor-β1 ( TGF-β1 ) and connective tissue growth factor( CTGF) in pulmonary tissues. Results The arterial partial pressure of oxygenate ( PaO2 ) in the treatment groups were increased gradually with the increasing of therapeutic dose at each time point and decreased with prolongation of time in the same group. The protein levels of TGF-β1 and CTGF in pulmonary tissues were decreased gradually with prolongation of time. TGF-β1 and CTGF expressed obviously less in the treatment groups than those in the model group at each time point .The higher therapeutic doses were, the less the expressions of TGF-β1 and CTGF were. Conclusion Atorvastatin has remarkable inhibitory effects on BLM-induced pulmonary fibrosis of rats in a dose- and timedependentmanner.
Objective To investigate the mechanismof lung injury caused by paraquat poisoning by observing the changes of fibrogenic cytokines in acute paraquat poisoned rats and the effects of pyrrolidine dithiocarbamate ( PDTC) . Methods Sprague-Dawley rats were randomly divided into three groups, ie. acontrol group ( n =6) , a PDTC group ( n =36) , a paraquat group ( n = 36) , and a paraquat + PDTC group( n =36) . The rats in the PDTC group, the paraquat group, and the paraquat + PDTC group were subdivided into 6 subgroups sacrificed respectively on 1st, 3rd,7th,14th, 28th and 56th day after the treatment. The levels of transforming growth factor-β1( TGF-β1 ) , platelet-derived growth factor ( PDGF) , insulin-like growthfactor-1 ( IGF-1) in serum were measured. Meanwhile the expression of connective tissue growth factor ( CTGF) and hydroxyproline in lung tissues were detected. The relationship of above cytokines with hydroxyproline was analyzed. Results The destructive phase in early ( 1 ~7 d) was characterized by hemorrhage, alveolar edema, and inflammatory cell infiltration. The proliferous phase in later stage ( 14 ~56 d) was characterized by diffused alveolar collapse with fibroblast proliferation and patchy distribution of collagen fibers. Compared with the control group, the level of TGF-β1 on all time points, the level of PDGF from7th to 56th day, the level of IGF-1 from3rd to 56th day in the paraquat group all significantly increased ( P lt;0. 01) . Immunohistochemistry results showed CTGF positive cells mainly located in aleolar epithelialcells, endothelial cells,macrophages in early stage, and fibroblasts were main positive cells on the 28th and the 56th day. The expression of CTGF in the paraquat group increased gradually compared with the control group on different time points ( P lt; 0. 05 or P lt; 0. 01) . Meanwhile, the levels of above cytokines were positively correlated with the level of hydroxyproline. Noteworthy, PDTC treatment led to significant decreases of above cytokines compared with the paraquat group in corresponding time points ( P lt;0. 05 or P lt;0. 01) .Conclusions Over expressions of IGF-1, TGF-β1 , PDGF, IGF-1 and CTGF may play important roles in lung fibrosis of paraquat poisoned rats. PDTC, as a b NF-κB inhibitor, may inhibits NF-κB activity and further significantly decreases expressions of cytokines, leading to significantly attenuated pulmonary inflammation and fibrosis. However, the mechanisms of PDTC intervention still remain to be explored.
Objective To study the effects of connective tissue growth factor (CTGF) on retinal Müller cells based on transcriptome analysis of RNA-seq technology.MethodsRetinal Müller cells were divided into the control group and the CTGF treatment group which was continuously cultured with 10 ng/ml of CTGF for 24 h. The influence of CTGF on the migration of Müller cells were tested by scratching experiments. The RNA transcriptome analysis was applied to complete transcriptome sequencing, differentially expressed genes and functional enrichment analysis of the two groups of cells. HiSeq sequencing technology was used to sequence the whole transcriptome of the two groups of cells to obtain biological big data, and analyze the differentially expressed miRNAs on this basis. The functions and signal pathways of differential miRNAs were analyzed through gene annotation (GO) functional significance enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway significant enrichment analysis. Based on transcriptome data, genes with differential expression multiples in the top ten between the two groups were screened out, and the expression of bone morphogenetic protein 4 (BMP4) gene was verified by real time fluorescence quantification PCR (qRT-PCR), immunofluorescence and Western blot.ResultsAfter CTGF stimulation of Müller cells, cell viability and mobility which compared with the control group were significantly increased, with statistically significant differences (t=3.453, P<0.05). The differential gene expression profile of CTGF induced Müller cells was obtained by RNA transcriptome analysis. Comparing the sequencing results of the two groups, it was found that 325 differentially expressed genes included 152 up-regulated genes and 173 down-regulated genes. The results of GO functional significance enrichment analysis showed that the functions of differential miRNA were mainly divided into three categories: biological processes, cellular components, and molecular functions. These differentially expressed genes were involved in signaling between nervous systems, adhesion between cells, and the interaction between cytokines and their receptors. These differentially expressed genes were involved in different metabolic pathways and biological processes such as tissue inflammation and fibrosis. BMP4 gene was seected for verification through immunofluorescence, qRT-PCR and western blot. The results showed that the expression of BMP4 was significantly higher than that in the control group, and the difference was statistically significant (t=39.490, 10.110, 5.470; P=0.004, 0.001, 0.006).ConclusionCTGF promotes cell proliferation and migration by up-regulating the expression of BMP4 in Müller cells, leading to tissue fibrosis and inducing inflammation.