OBJECTIVE: To explore the anatomical basis of blood supply and heel reconstruction by reversed island fibular musculocutaneous flap. METHODS: The blood supply of fibular musculocutaneous flap and the biomechanical characteristics of heel were studied by anatomical examination. One case with right heel full defect because of explosion injury was repaired by transfer of reversed island fibular vessels. The fibular flap was 14 cm in length with part of peroneus muscle and long flexor muscle of great toe. RESULTS: The lower part of fibular artery had plentiful anastomosis with anterior tibial artery and posterior tibial artery, which could provide ideal reversed blood supply. The rotatory point of vessel pedicle could be chosen according to the need of operation. The lowest site might be above 6 cm to lateral malleolus, and the vessel pedicle was 20 cm in length. The morphological feature of the reversed island fibular musculocutaneous flap was suitable to the biomechanical character of heel. The patient achieved satisfactory clinical result, the musculocutaneous flap survived well for 10 months of follow-up. CONCLUSION: The reversed island fibular musculocutaneous flap provide a new method for repairing the severe heel defect, especially in full defect of calcaneus and cuboid bone.
To investigate the feasibility of using the pedicled patella for repaire of the superior articular surface of the medial tibial condyle, 37 lower limbs were studied by perfusion. In this series, there were 34 obsolete specimens and 3 fresh specimens of lower legs. Firstly, the vessels which supply to patella were observed by the methods of anatomy, section and casting mould. Then, the form and area of the patellar and tibial medial conylar articular surface were measured in 30 cases. The results showed: (1) the arteries supplied to patella formed a prepatellar arterial ring around patella, and the ring gave branches to patella; (2) medial inferior genicular artery and inferior patellar branches of the descending genicular arterial articular branch merge and acceed++ to prepatellar ring at inferior medial part of patella; (3) the articular surface of patella is similar to the superior articular surface of the tibial medial condyle on shape and area. It was concluded that the pedicled patella can be transposed to medial tibial condyle for repaire of the defect of the superior articular surface. The function of the knee can be reserved by this method.
Objective To report the experience of repairingperineal and adjacent defects with thoracoum biblical island flaps. Methods From January 1988 toOctober 2003, 7 cases of perineal and adjacent soft tissue defects with thoracoum biblical island flaps, aged 17-52 years. Of 7 cases, there were 2 cases of severe scar contracture due to burn on perineal, 1 case of malignancy on perineal,4 cases of vast soft tissue defects of trauma on the parts of groin and higher two-third thigh. The area of flaps was 9 cm×27 cm-12 cm×30 cm, the longest pedicel of blood vessel was 16 cm. The donor sites of flaps less than 10 cm couldbe sutured directly, the ones more than 10 cm could be repaired with skin grafting. Results All the flaps primarily survived. There was no ischemia and necrosis atthe distal part of flaps. Four patients were followed up 6 months to 6 years. The color, texture and appearance of the flaps were good. The functions of walk and squat were satisfactory.Conclusion The thoracoum bilical island flap can repair perineal and adjacent soft tissue defects, moreover the donor is shady and the effect is ideal.
In order to study the clinical efficacy of facial artery musculocutaneous flap on repairing the defect of the floor of mouth, 21 patients had received this type of treatment from 1991 to 1997. The size of the flaps ranged from 8.0 x 3.4 cm to 12.1 x 5.4 cm and the average age of these patients was 59.5 years old. The donor site was closed directly. Nineteen flaps survived completely, while necrosis occurred at the apex of the other 2 flaps, which healed by ordinary management. The applied anatomy of the flap and the design and the main points of the operation were reported in details. The advantage of the flap and the prevention of facial malformation following operation were discussed. The conclusion was that this type of flap was ideal for reconstruction of the defects of floor of the mouth.
Objective To report 4 methods of reconstructing soft tissue defects in oral and maxillofacial regions after tumors resection using cervical pedicle tissue flaps. Methods One hundred seventy-two soft tissue defects were repaired with cervical myocutaneous flaps after resection of oral and facial cancer( 165 cases of squamous cell carcinoma and 7 cases of salivary carcinoma). The clinical stage of the tumors was stage Ⅰ in 21 cases, stage Ⅱ in 116 cases and stage Ⅲin 35 cases. Primary sites of the lesions were the tongue (59 cases), buccal mucosa (55 cases), lower gingiva (26 cases), floor of the mouth (25 cases), parotid gland (4 cases) and oropharynx (3 cases). Infrahyoid myocutaneous flaps were used in 60 cases, platysma flaps in 45 cases, sternocleidomastoid flaps in 59 cases and submental island flaps in 8 cases. The sizes of skin paddle ranged from 2.5 cm×5.0 cm to 5.0 cm ×8.0 cm. Results Among 153 survival flaps, there were55 infrahyoid myocutaneous flaps, 40 platysma flaps, 52 sternocleidomastoid flaps and 6 submental island flaps. There were 11 cases of total flap necrosis and8 cases of partial flap necrosis. The success rates were 91.67%(55/60) for infrahyoid myocutaneous flap, 88.89%(40/45) for platysma flap, 88.14% (52/59) for sternocleidomastoid flap and 75%(6/8) for submental island flap. After a follow-up of 3 11 years(5.7 years on average) among 101 cases local reccurence in 18 cases, cervical reccurence in 4 cases, distance metastasis in 2 cases. The survical rate at 3 years were 83.17%(84/101). Conclusion Cervical pedicle tissue flaps haveclinical value in reconstruction of small and medium-sized soft tissue defects after resection of oral and maxillofacial tumors.
Objective To investigate the treatment of extensive bone defect of distal femur caused by various diseases in adults. Methods From February 1998 to December 2002, 6 cases(aged from 19 to 37) of extensive bone defects of distal femur were treated with two free vascularized fibulae, whose defects were caused by resection ofbone tumor, osteomyelitis and trauma. After the resection of distal femur and articular surface of tibia, the fibulae were transplanted and fixed with screws. And the periosteum of the two fibulae was dissected and sutured with each other.Results The average follow-up time was 3.3 years. Twofree vascularized fibulae could give more support to the body and the bone union of the fibulae was possible when the periosteum was incised and sutured with each other. As time went on, both of the medullary canal reunioned to form a new canal as a whole, which would make the grafts ber. Conclusion Autograft with two free vascularized fibulae can increase the stability in treating extensive bone defect of distal femur, but the union of knee joint will make flexion and extension impossible.
In the repair of the defect of peripheral nerve, it was necessary to find an operative method with excellent therapeutic effect but simple technique. Based on the experimental study, one case of old injury of the ulnar nerve was treated by end-to-side neurorraphy with the intact median nerve. In this case the nerve defect was over 3 cm and unable to be sutured directly. The patient was followed up for fourteen months after the operation. The recovery of the sensation and the myodynamia was evaluated. The results showed that: the sensation and the motor function innervated by ulnar nerve were recovered. The function of the hand was almost recovered to be normal. It was proved that the end-to-side neurorraphy between the distal stump with the intact median nerve to repair the defect of the ulnar nerve was a new operative procedure for nerve repair. Clinically it had good effect with little operative difficulty. This would give a bright prospect to repair of peripheral nerve defect in the future.
Objective To explore the clinical effect of the lower rotating point super sural neurocutaneous vascular flap on the repair of the softtissue defects in the ankle and foot. Methods From May 2001 to February 2006, 24 patients with the soft tissue defects in the ankle and foot were treated with the lower rotating point super sural neurocutaneous vascular flaps. Among the patients, 15 had an injury in a traffic accident, 6 were wringedand rolled by a machine, 1 was frostbited in both feet, 2 were burned, 25 had an exposure of the bone and joint. The disease course varied from 3 days to 22 months; 19 patients began their treatment 3-7 days after the injury and 5 patients were treated by an elective operation. The soft tissue defects ranged in area from 22 cm × 12 cm to 28 cm × 12 cm. The flaps ranged in size from 24 cm × 14cm to 30 cm × 14 cm, with a range up to the lower region of the popliteal fossa. The rotating point of the flap could be taken in the region 1-5 cm above thelateral malleolar. The donor site was covered by an intermediate thickness skingraft. Results All the 25 flaps in 24 patients survived with asatisfactory appearance and a good function. The distal skin necrosis occurred in 1 flap, but healing occurred after debridement and intermediate thickness skin grafting. The follow-up for 3 months to 5 years revealed that the patients had a normal gait, the flaps had a good sense and a resistance to wearing, and no ulcer occurred. The two point discrimination of the flap was 5-10 mm. Conclusion The lower rotating point super sural neurocutaneous vascular flap has a good skin quality, a high survival rate, and a large donor skin area. The grafting is easy, without any sacrifice of the major blood vessel; therefore, it is a good donor flap in repairing a large soft tissue defect in the ankle and foot.
OBJECTIVE To investigate the feasibility of repairing the whole layer defects of tibial plateau by implanting tissue-engineering cartilage. METHODS: The chondrocytes of 2-week-old rabbits were cultured and transferred to the 3rd generation, and mixed with human placenta collagen-sponge. The whole layer defects of tibial plateau in adult rabbits were repaired by the tissue-engineering cartilage in the experimental group; the defects were left un-repaired in control group. The repair results of defects were observed after 4, 12 and 24 weeks. RESULTS: In experimental group, no obvious new cartilage formation was seen 4 weeks after operation; some new cartilage formation was found after 12 weeks. Histological observation showed that chondrocytes had irregular edge, honeycombing structure and that cartilage cavities formed around the chondrocytes. After 24 weeks, obvious new cartilage formation was found with smooth surface, and linked with the tissues around it, but the defect was not repaired completely; histological results showed that cartilage cavities formed and that cartilage matrix was stained positively for toluidine blue. In control group, the defect was not repaired. CONCLUSION: The tissue-engineering cartilage can repair the defects of the whole layer cartilage of tibial plateau in rabbits, it is feasible to repair the whole layer cartilage defects of tibial plateau by this method.
Objective To study the difference of repairing segmental bone defect with bio-derived bone preserved by various methods.Methods Freeze-dried biomaterials had been stored in two different preservation solutions for three months,while the biomaterials stored for same period were observed as control group. The experimental model of 15 mm radial segmentaldefect was made in 60 New Zealand white rabbits, which were divided into groups A,B and C according to transplant materials preserved by various methods. Groups A and B were deeply divided into A1 and A2 subgroups, B1 and B2 subgroups according to whether materials were cocultured with osteoblasts. Tissue engineered bone was used to repair bone defects of left limbs in A1 and B1 subgroups, while simple material to repair defects of right limbs in A2 and B2 subgroups. Group C was divided into C1 and C2 subgroups. Freeze-dried material was used to repairbone defects of the left limbs, while defects of the right limbs as blank control group. The samples were harvested and observed by the roentgenographical, histomorphological, biomechanical and computerized graphical analysis at 4,8 and 16 weeks. Results All of the defects treated with implants exhibited new bone formation 4, 8 and 16 weeks postoperatively, increasing with time. The radiological, histomorphological and biomechanical evaluation showed that the ability of new bone formation was arranged in 6 subgroups as follows:A1gt;A2gt;C1gt;B1gt;B2gt;C2, the difference was significant between them (P<0.001, P<0.05).The ability of new bone formation was best and at 16 weeks the defect was bridged with the appearance of marrow cavities in A1 subgroup, the biomechanicalproperties in implants approached to those of normal bone. Conclusion The choice of proper preservation solution can improve the ability of repairing bone defect.