Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
Objective To investigate the effects of sodium hyaluronate solution on the proliferation and differentiation of myoblasts. Methods The 3rd subculture myoblasts from muscle of infant SD rat were cultured in four growth media, in which the concentrations of sodium hyaluronate were 0.05% (group A) , 0.1%( group B), 0.2% (group C)and 0 (group D, control group), respectively. The proliferation rate of myoblasts in each medium was observed through growth curves by means of count and MTT. At the same time, the subculture myoblasts were cultured in differentiated media in which the concentrations of sodium hyaluronate were 0 and 0.1%. The capacity of fusion of myoblasts was compared between two kinds of differentiated media. Results There were the nearly same proliferation curse in Groups A, B and C: increasing by logarithm at 2 days and reaching peak value at 4 days. The myoblasts in Group D increased slowly: increasing by logarithm at 3 days, doubling at 5 days and reaching peak value at 6 days. MTT has the similar curse to counting. The myoblast proliferation of Group B was more than that of the other groups. The peak value of myoblast fusion was 35% at 6 days in common differentiated media; slowly reached 11.7% at 7 days in the differentiated media in which the concentrations of sodiumhyaluronate was 0.1%.Conclusion Sodium hyaluronate at certain concentration can be a decent media for myoblasts, it can accelerate proliferation and differentiation of myoblasts.
Objective To review research progress of adipose tissuederived stromal cells (ADSCs).Methods The recent articles on ADSCs were extensively reviewed, and the culture and differentiation ability of ADSCs were investigated.Results A population of stem cells could be isolated from adult adipose tissue, they were processed to obtain a fibroblast-like population of cells and could be maintained in vitro for extended periods with stable population doubling. The majority of the isolated cells were mesenchymal origin, with a few pericytes,endothelial cells and smooth muscle cells. ADSCs could be induced to differentiate intomultiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic and adipogenic cells, they could also differentiate into nerve cells.Conclusion ADSCs can substitute mesenchymal stem cells and become an alternative stem cells source for tissue engineering.
Objective To investigate the neural markers’ expression in the differentiation of marrow stromal stem cells(MSCs) into neural cells. Methods Rats MSCs were expanded as undifferentiated cells in vitro for 5 to7 generations and cultured in a modified neuronal medium(MNM) after 24 hours of all-trans retinoidacid(ATRA) pretreatment. Immunocytochemistry was used to detect the expression of nestin、neuron-specific nuclear protein(NeuN)、microtubule-associated protein2 (MAP-2) and glial fibrillary acidic protein(GFAP) at different timepoints. Results After ATRA and MNM treatment, MSCs progressively assumed neuronal morphological characteristics. Nestin occurred first after 24 hours of ATRA treatment; then NeuN expressed after 2 hours of MNM treatment; the last one was MAP-2 and it was detected after 9 hours of MNM treatment. Other markers continuously expressed except that the expression of nestin peaked after 18 hours of MNM induction and remarkably decreased after 36 hours. Conclusion ATRA and MNM could promote the differentiation of MSCs into neural cells and the expression of neural-specific markers was consistent with current knowledge regarding the timepoints of markers expression in the neuronal development which provides a good model in vitro for neuronal development research.
【Abstract】 Objective To explore a method to identify the sensory and motor fascicles in peri pheral nervetrunk. Methods Thirty Wistar rats were selected to obtain whole spine. The spinal gangl ion, its dorsal root and ventral root,and sciatic nerve were harvested, Annexin V and Agrin specificities were observed with Western blot. In the experimental group,anterior branch and posterior branch of spinal nerve, sciatic nerve, and its muscular branch and cutaneous branch were harvested from 15 rats to make the observation of immunohistochemistry. In the other 15 rats, first antibody was replaced by PBS as control group. Different nerve fascicles were studied with Micro Raman scattering technique in 16 12-month-old New Zealand rabbits. Results The Annexin V and Agrin were special substances of sensory and motor nerves respectively and can act as specific antigens for identifying different nerve fascicles. There were significant differences in the intensity and breadth of the peak of the spectral properties between motor and sensory fascicles at frequencies of 1 088, 1 276, 1 439, 1 579 and 1 659 cm-1 .The peak intensity ratios of 1 276 to 1 439 cm-1 were 0.95±0.06 in motor nerve fascicles and 1.17±0.08 in sensory fascicles, showing significant differences (P lt; 0.05). Conclusion The Micro Raman spectra is more effective than immunohistochemistry in identifying different nerve fascicles, and it possesses as feasibil ity for cl inical appl ication.
Objective To explore the method that can inducethe mesenchymal stem cells (MSCs) to differentiate into the neuronlike cells in vitro.Methods The neuron-like cells were isolated froman SD rat (age, 3 months; weight, 200 g). They underwent a primary culture; theinduced liquid supernatant was collected, and was identified by the cell immunohistochemistry. The C3H1OT1/2 cells were cultured, as an MSCs model, and they were induced into differentiation by β-mercaptoethanol (Group A) and by the liquid supernatant of the neuron-like primary cells (Group B), respectively. The cells were cultured without any induction were used as a control (Group C). Immunohistochemistrywas used to identify the type of the cells. Results The result of the immunochemistry showed that the cells undergoing the primary culture expressed the neurofilament protein (NF) and the neuronspecific enolase (NSE), and they were neuron-like cells. β-mercaptoethanol could induce the C3H1OT1/2 cells toexpress NF and NSE at 2 h, and the expression intensity increased at 5 h. The liquid supernatant of the primarily-cultured neuron-like cells could induce theC3H1OT1/2 cells to express NF and NSE at 1 d, but the expression intensity induced by the liquid supernatant was weaker than that induced by β-mercaptoethanol. The positivity rate and the intensity expression of NSE were higher than those of NF. Conclusion MSCs can differentiate into the neuron-like cells by β-mercaptoethanol and the microenvironment humoral factor, which can pave the way for a further study of the differentiation of MSCs and the effectof the differentiation on the brain trauma repair.
Objective To study the effect of core-binding factor α1(Cbfa1)on the mesenchymal stem cells(MSCs) osteoblastic differentiation.Methods The MSCs were isolated from Japan white rabbits and cultured in vitro. The 3rd generation MSCs were infected with Cbfa1 recombinant adenovirus. The expression of Cbfa1 was detected by immunofluorescence after being infected for 3 days and the proliferation was estimated by MTT method from the 1st day to the 7th day. Then the MSCs were divided into four groups: the commonly cultured group, the simply induced group, the control adenovirus treatment group, and the Cbfa1 adenovirus treatment group. The expressions of mRNA for a various of osteoblast gene markers such as alkaline phosphatase, osteocalcin, osteopontin and type I collagen were analyzed based on reverse transcriptase polymerase chain reaction (RT-PCR). The change of adipose and myoblastic differentiation gene marker PPARγ2 and MyoD expression were detected by RT-PCR respectively.Results Positive staining of Cbfa1 was found in the MSCs infected with Cbfa1 adenovirus, and there was no significant difference in cell proliferation among the experimental groups(Pgt;0.05). The RT-PCR indicated that all the osteoblast gene markers except type I collagen were up-regulated in the Cbfa1 adenovirus treatment group. In contrast, the expressions of PPARγ2 and MyoD were restrained. Conclusion Cbfa1 can directly promote the differentiation of MSCs into osteoblasts.
Objective To compare the myogenic differentiation abil ity in vitro of rabbit adipose-derived stem cells (ADCSs) from different sites so as to provide ideal seed cells for repair and reconstruction of urinary tract. Methods Adipose tissues were obtained from the nape of the neck, post peritoneum, and vicinity of epididymis of a 4-month-old male New Zealand rabbit and ADSCs were harvested through collagenase digestion. ADSCs were purified by differential attachment method. The protein marker CD44 of rabbit ADSCs was used to identify the stem cells by immunocytochemistry, then the5th generation of ADSCs were induced to differentiate into adipogenic, osteogenic, and myogenic cells. Multi- differentiation was confirmed by Oil red O staining, von Kossa staining, and RT-PCR. Myogenic differentiation abil ities of ADSCs from 3 different sites were compared between the control group (L-DMEM medium containing 10%FBS) and the experimental group (myogenic medium) by RT-PCR method. Results ADSCs could be easily isolated from adipose tissues of the nape of the neck, post peritoneum, and vicinity of epididymis. ADSCs displayed a typical cobblestone morphology. Brown particles could be seen in ADSCs by CD44 immunocytochemistry staining. Oil red O staining showed red fat drops in ADSCs after 14 days of adipogenic culture. Black matrix could be seen in ADSCs by von Kossa staining after 28 days of osteogenic culture. RT-PCR detection showed moderate α-actin expression in the control group and b α-actin expression in the experimental group after 42 days of myogenic culture. The growth rate of α-actin from the adipose tissue of post peritoneum (28.622% ± 4.879%) was significantly lower (P lt; 0.05) than those from the adipose tissues of the nape of the neck (35.471% ± 3.434%) and vicinity of epididymis (38.446% ± 4.852%). Conclusion The ADSCs from different sites show different myogenic differentiation abil ities in vitro. ADSCs from the adipose tissues of the nape of the neck and vicinity of epididymis can be used as ideal seed cells for tissue engineering of lower urinary tract.
Objective To explore effect of platelet-rich plasma (PRP) on rabbit BMSCs differentiation into SC in vitro and to detect secretory function of the differentiated cells. Methods BMSCs isolated from 5 mL bone marrow of 2-montholdNew Zealand white rabbit were cultured using density gradient centrifugation and adherence screening methods. A total of 5 mL femoral vein blood was obtained from rabbits to prepare PRP using modified Appel method. The BMSCs at passage 3 were divided into three groups: the combined induction group, in which the cells were cultured with complete medium containing PRP after β-mercaptoethanol and retinoic acid inductions; the simple induction group, in which the cells were cultured with L-DMEM complete medium without PRP afterβ-mercaptoethanol and retinoic acid induction; the control group, in which the cells were cultured with L-DMEM complete medium. Growth condition of the cells in each group was observed using inverted microscope. cell identification was conducted at 4, 7, 9, and 11 days after culture using immunofluorescence staining method, and NGF content was detected by ELISA method. NGF mRNA expression was assayed by RT-PCR 11 days after culture. Results Most cells in the combined induction and the simple induction group were out of BMSCs typical cell morphology 4 days after culture; cells in the combined induction group were out of BMSCs typical cell morphology and changed into cells resembl ing SC in terms of morphology and contour 9 days after culture. The cells in the control group showed no obvious morphological changes. S-100 protein expression in the cells was evident in the combined induction and the simple induction group at each time point after induced culture; the positive expression rate of cell in each group was increased over time, and significant differences were evident between the combined induction group and the simple induction group 7, 9, and 11 days after culture (P lt; 0.05). Control groupwas negative for the expression. There were significant differences when comparing the control group with the combined induction group or the simple induction group in terms of NGF content at each time point (P lt; 0.01). Significant difference was evident between the combined induction group and the simple induction group 7, 9, and 11 days after culture (P lt; 0.05), and no significant difference was noted 4 days after culture (P gt; 0.05). Relative intensity of NGF mRNA expression in the combined induction group was greater than that of the simple induction group 11 days after culture (P lt; 0.05). Conclusion Rabbit BMSCs can differentiate into SC excreting NGF under certain induction condition in vitro. PRP can remarkably promote BMSCs differentiation into SC.
Objective To investigate the effects of the recombinant plasmid pIRES-hBMP-2-hVEGF165 on differentiation and maturation of hBMSCs in vitro. Methods The co-expressing vector of hBMP-2 and hVEGF165 was constructed. The BMSCs were isolated and cultured from health adult human denoted marrow. By the l ipofection method, the reconstructed plasmids pIRES-hBMP-2-hVEGF165, pIRES-hBMP-2, pIRES-hVEGF165 and pIRES neo empty vector, weretransfected to hBMSCs (groups A, B, C and D). The untransfected cells were harvested as control group (group E). After4 weeks of culture, RT-PCR was employed to assay the hBMP-2, hVEGF165 and osteocalcin mRNA expression in hBMSCs. The expressions of hBMP-2 and hVEGF165 of BMSCs were assayed by Western blot. The level of ALP activities of BMSCs was determined. Col I was also determined by immunohistochemical staining. Results Compared to group E, the hBMSCs in group A secreted high level of hBMP-2, hVEGF165, Col I and osteocalcin; osteocalcin and Col I expressed at high level in group B, and hVEGF165 expressed at high level in group C. Otherwise, the expression of hVEGF165 in group B and the expressions of hBMP-2 and Col I in group C resemble to that of groups D and E, no expression or few expression was observed. The activities of ALP in groups A, B, C, D and E were 0.91 ± 0.03, 0.90 ± 0.02, 0.64 ± 0.03, 0.67 ± 0.01 and 0.66 ± 0.02, respectively. The activity of ALP of groups A and B were significantly increased compared with that of group E (P lt; 0.05); there was no significant difference among groups C, D and E (P gt; 0.05). Conclusion The recombinant plasmid pIRES-hBMP-2-hVEGF165 can be successfully transfected into BMSCs with cation l iposome-mediated transfection method, the exogenous hBMP-2 and hVEGF165 genes can be expressed constitutively in the transfected BMSCs, and it can enhance the differentiation abil ities of BMSCs.