The therapeutic effect of anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) was determined by a number of factors. Comprehensive thorough analysis of clinical features, imaging results and treatment response can predict the potential efficacy and possible vision recovery for the patient, and also can optimize the treatment regime to make a personalized therapy plan. Precise medicine with data from genomics, proteomics and metabolomics study will provide more objective and accurate biology basis for individual precise treatment. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy, to achieve individualized precise diagnosis and treatment, to improve the therapeutic outcome of nAMD.
Uveitis is a group of inflammatory diseases affecting the uveal tract, retina, retinal blood vessels and vitreous. Due to its complex etiology, various entities, diverse and lack of constancy in treatment, some patients can experience visual impairment and even loss. In view of the fact that blindness caused by uveitis is mostly incurable and occurs usually in young and middle-aged people, it accounts for an important part of blinding eye diseases and has attracted worldwide attention. With the continuous development of precision medicine, clinicians will face new problems and challenges in disease diagnosis, and further in-depth research is needed to explore more optimized and efficient diagnostic processes and examinations to improve the diagnosis of uveitis in China.
Recent years have witnessed tremendous progress in vitreoretinal surgery. The treatment of vitreoretinal diseases has increased enormously and its related indications expanded widely with the contribution of the emerging novel technologies, methods, equipment and new ideas. Attaching importance to minimally invasive surgery, application of auxiliary drugs, development of improved equipment and surgical technique were the main features. Further basic and clinical research is necessary to promote innovation and development of vitreoretinal surgery in China to keep pace with and surpass advanced technology.
Diabetic retinopathy (DR) is the leading causes of blindness in workingaged people, of which diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) are the two main causes of visionthreatening. Through the regular screening of patients with diabetes, the risk factors of DR can be identified and proper interventions can prevent the incidence of DR. Timely retinal laser photocoagulation and application of the reninangiotensin system inhibitors (candesartan or fibrates), lipidlowering drug fenofibrate can inhibit DR progress. Macula local and (or) grid pattern photocoagulation or in combination with bevacizumab intravitreal injection can effectively relief DME. In regard to late PDR, vitrectomy could restore or retain useful vision, importantly, minimally invasive 23G vitrectomy and preoperative bevacizumab intravitreal injection greatly improved the surgical outcomes. However DR pathogenesis is not entirely clear. Also there is a lack of effective and feasible DR screening strategy in China. Furthermore existing evidencebased data of medical and surgical treatment of DR is insufficient. Therefore, the DR prevention and treatment is still a long way to go in China.
Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022) is based on evidences in recent clinical trials and a system of Grading of Recommendations, Assessment, Development and Evaluation of evidence quality and strength of recommendations. The main key points around why the diabetic macular edema (DME) changes the classification, what thresholds for initiating anti-vascular endothelial growth factor (VEGF) drug therapy; eyes with center-involved DME (CI-DME) and good vision for clinical significant macular edema still treated by focal laser even with good vision, the clinical pathway for CI-DME changes first-line treatment from laser to anti-VEGF, loading dose of anti-VEGF for CI-DME in non-proliferative diabetic retinopathy (DR) from 3 injections up to 4-5 injections is recommended; severe non-proliferative DR and proliferative DR with vision impairment but without hemorrhages and retinal traction could be considered first treatment of anti-VEGF comparing to initiate pan-retinal photocoagulation (PRP) (weakly recommended), PRP is still gold-standard for progressive non-perfusion area of retina. With the rapid development of DR evaluation devices such as optical coherence tomography, wide-angle optical coherence tomography angiography and wide-angle fluorescein fundus angiography, imaging biomarkers have been provided for the degree of DR lesion, treatment response and prognosis. It is believed that the clinical practice will be promoted a new height by the 2022 edition of Chinese DR guideline.
Macular hole is a retinal hole locates in macular fovea, and can be idiopathic, traumatic and high myopic. Although its etiology, disease course, treatment and prognosis varied from case to case, enforcing macularhole closure and retinal reattachment are challenges to all cases. Completely removal of premacular vitreous cortex is the key to successful repair, and inner limiting membrane (ILM) staining and peeling can greatly help the removal of those cortexes. Selections and usages of different dyes, methods of ILM peeling, and strategies to promote macular retinachoroidal adhesion warrant further study to improve treatment and prognosis of macular holes.
Optical coherence tomography angiography (OCTA) is a new and non-invasive imaging technique that is able to detect blood flow signal in the retina and the choroid within seconds. OCTA is different from the traditional angiography methods. The major advantages of OCTA are that it can observe blood flow signal in different layers of the retina and the choroid without injecting any dye, provide blood flow information that traditional angiography cannot provide, and enrich pathophysiological knowledge of the retinal and choroidal vascular diseases., which help us to make an accurate diagnosis and efficient evaluation of these diseases. However there is a large upgrade potential either on OCTA technique itself or on clinical application of OCTA. We need to fully understand the advantage and disadvantage, and differences of OCTA and traditional angiography. We also need to know how to interpret the result of OCTA. With that we could make a fast diagnosis in a non-invasive way and improve our knowledge of the retinal and choroidal vascular diseases.
Hereditary ocular fundus disease is an important cause of irreversible damage to patients' visual acuity. It has attracted much attention due to its poor prognosis and lack of effective clinical interventions. With the discovery of a large number of hereditary ocular fundus genes and the development of gene editing technology and stem cell technology, gene and stem cell therapy emerged as the new hope for curing such diseases. Gene therapy is more directed at early hereditary ocular fundus diseases, using wild-type gene fragments to replace mutant genes to maintain existing retinal cell viability. Stem cell therapy is more targeted at advanced hereditary ocular fundus diseases, replacing and filling the disabled retinal cell with healthy stem cells. Although gene and stem cell therapy still face many problems such as gene off-target, differentiation efficiency, cell migration and long-term efficacy, the results obtained in preclinical and clinical trials should not be underestimated. With the emergence of various new technologies and new materials, it is bound to further assist gene and stem cell therapy, bringing unlimited opportunities and possibilities for the clinical cure of hereditary ocular fundus diseases.
Myopia has become a major problem that threatens human health worldwide. Complications caused by high myopia are one of the leading causes of low vision and blindness. As a chronic disease that seriously threatens ocular health in the clinical practice and public health fields, the prevention and control of high myopia should actively promote a tertiary prevention strategy, and take advantages of the latest fundus imaging technology and big data technology, artificial intelligence to explore the evolution mechanism of “myopia→high myopia→pathological myopia”. Special efforts should be focused on the establishment of a scientific myopia prediction model, implementation of effective high myopia monitoring and management, and early detection and treatment of complications of high myopia to reduce the incidence of low vision and blindness.
Fundus autofluorescence (FAF) relies primarily on the presence of accumulated lipofuscin in the retinal pigment epithelium (PRE) cells. It has emerged as a valuable tool to detect and evaluate the viability and structural changes of the RPE in live. As a noninvasive, repeatable, simple and efficient means of detection, FAF imaging can provide information of RPE structure and function to assistant the diagnosis of many retinal diseases with other conventional fundus imaging technologies. With quantitative analysis and complementary analysis with other fundus imaging technologies, the FAF features of different retinal diseases will be further understood. This knowledge will not only extend the reasonable and unique clinical applications of FAF, but also will contribute to the understanding the pathogenesis and improving the treatment of many retinal diseases.