west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Electroencephalography" 14 results
  • Research progress of brain-computer interface application paradigms based on rapid serial visual presentation

    Rapid serial visual presentation (RSVP) is a type of psychological visual stimulation experimental paradigm that requires participants to identify target stimuli presented continuously in a stream of stimuli composed of numbers, letters, words, images, and so on at the same spatial location, allowing them to discern a large amount of information in a short period of time. The RSVP-based brain-computer interface (BCI) can not only be widely used in scenarios such as assistive interaction and information reading, but also has the advantages of stability and high efficiency, which has become one of the common techniques for human-machine intelligence fusion. In recent years, brain-controlled spellers, image recognition and mind games are the most popular fields of RSVP-BCI research. Therefore, aiming to provide reference and new ideas for RSVP-BCI related research, this paper reviewed the paradigm design and system performance optimization of RSVP-BCI in these three fields. It also looks ahead to its potential applications in cutting-edge fields such as entertainment, clinical medicine, and special military operations.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Fontanel compensation for infant electroencephalography forward modeling method

    Magnetic resonance imaging (MRI)-based electroencephalography (EEG) forward modeling method has become prevalent in the field of EEG. However, due to the inability to obtain clear images of an infant’s fontanel through MRI, the fontanelle information is often lacking in the EEG forward model, which affects accuracy of modeling in infants. To address this issue, we propose a novel method to achieve fontanel compensation for infant EEG forward modeling method. First, we employed imaging segmentation and meshing to the head MRIs, creating a fontanel-free model. Second, a projection-based surface reconstruction method was proposed, which utilized priori information on fontanel morphology and the fontanel-free head model to reconstruct the two-dimensional measured fontanel into a three-dimensional fontanel model to achieve fontanel-compensation modeling. Finally, we calculated a fontanel compensation-based EEG forward model for infants based on this model. Simulation results, based on a real head model, demonstrated that the compensation of fontanel had a potential to improve EEG forward modeling accuracy, particularly for the sources beneath the fontanel (relative difference measure larger than 0.05). Additional experimental results revealed that the uncertainty of the infant’s skull conductivity had the widest impact range on the neural sources, and the absence of fontanel had the strongest impact on the neural sources below the fontanel. Overall, the proposed fontanel-compensated method showcases the potential to improve the modeling accuracy of EEG forward problem without relying on computed tomography (CT) acquisition, which is more in line with the requirements of practical application scenarios.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
  • Analysis of EEG among 2 357 healthy people in Beijing area

    ObjectiveNumerous foreign researches focused on the changes of EEG during the developmental periods from the newborn to late adulthood. However, the EEG changes of healthy Chinese people is still rare. Therefore, we examined the EEG of 2 357 healthy Chinese people.MethodsIn 1982, guided by Prof. Feng, we analysed the waking EEG of 2 357 healthy people, from 2 to above 60 years old, including open eyes induction test and hyperventilation.ResultsAt age 2 ~ 4, the posterior basic rhythms has reached 8 ~ 9 Hz, but the rhythms were unregular pattern. After age 7, the rhythms were 9 Hz, α index was more than 60%, the amplitude was higher than other ages. At age 12 ~ 14, the main rhythms was 10 Hz, the same as adulthood, α index was 70% ~ 80%. After this age, the amplitude of α rhythm deceased gradually. Above 60 years old, the main rhythm was 9 Hz, α index <60%, the amplitude was lower than adulthood. At age 14 ~ 16, the θ index in frontal and temporal regions was 6%, the same as the adulthood. At age 18 ~ 20, β index was 20%.ConclusionsIn the article, we analyzed the waking EEG of 2 357 healthy Chinese people in Beijing area. Although this multi-center study was accomplished at 1980s, the data is still of great value to the clinical EEG today.

    Release date:2019-07-15 02:48 Export PDF Favorites Scan
  • Dynamic continuous emotion recognition method based on electroencephalography and eye movement signals

    Existing emotion recognition research is typically limited to static laboratory settings and has not fully handle the changes in emotional states in dynamic scenarios. To address this problem, this paper proposes a method for dynamic continuous emotion recognition based on electroencephalography (EEG) and eye movement signals. Firstly, an experimental paradigm was designed to cover six dynamic emotion transition scenarios including happy to calm, calm to happy, sad to calm, calm to sad, nervous to calm, and calm to nervous. EEG and eye movement data were collected simultaneously from 20 subjects to fill the gap in current multimodal dynamic continuous emotion datasets. In the valence-arousal two-dimensional space, emotion ratings for stimulus videos were performed every five seconds on a scale of 1 to 9, and dynamic continuous emotion labels were normalized. Subsequently, frequency band features were extracted from the preprocessed EEG and eye movement data. A cascade feature fusion approach was used to effectively combine EEG and eye movement features, generating an information-rich multimodal feature vector. This feature vector was input into four regression models including support vector regression with radial basis function kernel, decision tree, random forest, and K-nearest neighbors, to develop the dynamic continuous emotion recognition model. The results showed that the proposed method achieved the lowest mean square error for valence and arousal across the six dynamic continuous emotions. This approach can accurately recognize various emotion transitions in dynamic situations, offering higher accuracy and robustness compared to using either EEG or eye movement signals alone, making it well-suited for practical applications.

    Release date: Export PDF Favorites Scan
  • Fusion of electroencephalography multi-domain features and functional connectivity for early dementia recognition

    Dementia is a neurodegenerative disease closely related to brain network dysfunction. In this study, we assessed the interdependence between brain regions in patients with early-stage dementia based on phase-lock values, and constructed a functional brain network, selecting network feature parameters for metrics based on complex network analysis methods. At the same time, the entropy information characterizing the EEG signals in time domain, frequency domain and time-frequency domain, as well as the nonlinear dynamics features such as Hjorth and Hurst indexes were extracted, respectively. Based on the statistical analysis, the feature parameters with significant differences between different conditions were screened to construct feature vectors, and finally multiple machine learning algorithms were used to realize the recognition of early categories of dementia patients. The results showed that the fusion of multiple features performed well in the categorization of Alzheimer’s disease, frontotemporal lobe dementia and healthy controls, especially in the identification of Alzheimer’s disease and healthy controls, the accuracy of β-band reached 98%, which showed its effectiveness. This study provides new ideas for the early diagnosis of dementia and computer-assisted diagnostic methods.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
  • Neurovascular coupling analysis of working memory based on electroencephalography and functional near-infrared spectroscopy

    Working memory is an important foundation for advanced cognitive function. The paper combines the spatiotemporal advantages of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) to explore the neurovascular coupling mechanism of working memory. In the data analysis, the convolution matrix of time series of different trials in EEG data and hemodynamic response function (HRF) and the blood oxygen change matrix of fNIRS are extracted as the coupling characteristics. Then, canonical correlation analysis (CCA) is used to calculate the cross correlation between the two modal features. The results show that CCA algorithm can extract the similar change trend of related components between trials, and fNIRS activation of frontal pole region and dorsolateral prefrontal lobe are correlated with the delta, theta, and alpha rhythms of EEG data. This study reveals the mechanism of neurovascular coupling of working memory, and provides a new method for fusion of EEG data and fNIRS data.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Clinical electrophysiological features of cyclin-dependent kinase-like 5 gene induced developmental epileptic encephalopathy

    ObjectiveTo investigate the clinical electrophysiological characteristics of Cyclin-dependent kinase-like 5 gene induced developmental epileptic encephalopathy (CDKL5-DEE). MethodsThe clinical data and series of video EEGs of children with CDKL5-associated developmental epileptic encephalopathy (CDKL5-DEE) who were admitted to the Children’s Medical Center of Peking University First Hospital from June 2016 to May 2024 were retrospectively analyzed. Results A total of 16 patients with CDKL5-DEE were enrolled, including 13 females and 3 males. All patients had de novo variants of CDKL5 gene, including 6 cases of missense variants, 5 cases of frameshift variants, 4 cases of nonsense variants, and 1 case of large fragment deletion. The age of onset was 8 days (d) after birth ~1 year (y) and 10 months (m), and the median age was (85.94±95.76) days. Types of seizures at onset: 4 cases of tonic seizures [age of onset 10~52 days, median age (25.5±15.84) days]; There were 5 cases of focal seizures [age of onset 8 d~8 m, median age (77.76±85.97) d]. There were 4 cases of epileptic spasmodic seizures [age of onset 3 m~1 y 10 m, median age (6.25±3.49) m]; There were 2 cases of bilateral tonic-clonic seizures [age of onset 30~40 days, median age (35.00±5.00) days]; focal concurrent epileptic spasm seizures 1 case (age of onset 2 m). A total of 59 VEEG sessions were performed in the pediatric EEG room of Peking University First Hospital for 4 hours. All the results were abnormal, including 26 normal background, 25 slow rhythm difference with background, and 8 no background. The interictal was 16 posterior or focal discharges, 19 multifocal discharges, 17 generalized or accompanied by focal/multifocal discharges, and 7 hypsarrhythmia; The ictal was 33 epileptic seizures, 6 myoclonic seizures, 5 focal seizures, 2 tonic-clonic seizures, 2 atypical absence seizures, 2 tonic seizures, 1 myoclonic sequential focal seizure, 1 focal sequential epileptic spasm, and 1 hypermotor-tonic-spasms. The background of patients within 6 months of age was normal, and the background abnormality increased significantly with age. generalized discharges are evident after 2 years of age between seizures. Conclusion CDKL5-DEE seizures have an early onset and are refractory to medications. Epileptic spasms are the most common type of seizure in every patient and long-lasting, with generalized seizures increasing markedly with age. EEG is characterized by a normal background within 6 months. With the increase of age, the background and interictal discharges have a tendency to deteriorate.

    Release date:2024-08-23 04:11 Export PDF Favorites Scan
  • Clinical diagnosis strategy of epilepsy based on biorhythm perspective

    Epilepsy is a prevalent neurological disorder characterized by recurrent, transient episodes of central nervous system dysfunction resulting from abnormal neuronal discharges in the brain. Diagnosis of epilepsy integrates clinical manifestations, electroencephalogram (EEG) findings, and imaging studies. Clinical presentations are diverse and variable, with abnormal EEG serving as a critical diagnostic indicator; however, some patients exhibit normal EEG results. Moreover, there are still many patients who were underdiagnosed because of atypical epilepsy symptoms. With advancements in EEG and multimodal imaging technologies, diagnostic strategies based on biorhythm theory have emerged. This paper reviewed the diagnostic approaches for epilepsy grounded in biorhythm theory, in order to provide more effective support for the clinical management of epilepsy.

    Release date:2025-03-19 01:37 Export PDF Favorites Scan
  • Application of OBE-based PBL teaching method in electroencephalography education

    Outcome-based education (OBE) emphasizes student learning outcomes as the core, utilizing a backward design approach to construct the curriculum. In teaching practice based on OBE, teachers need to develop a blueprint in advance that is closely aligned with the content of the teaching, aiming to promote deep learning and ensure that students can fully demonstrate their learning outcomes. Electroencephalogram (EEG) is a widely used technology in the field of neuroscience, and the special EEG changes convey a variety of information, which is crucial to the study of diseases. However, due to its specialization and learning difficulty, EEG teaching has been facing many challenges. Under the guidance of OBE concept, traditional knowledge lecture and problem-based learning (PBL) are organically integrated, combined with case analysis and flipped classroom teaching mode, which are applied in EEG teaching practice, in order to obtain more ideal teaching effect.

    Release date:2025-01-11 02:34 Export PDF Favorites Scan
  • Exploration of neural mechanisms and classification models of post-stroke visuospatial neglect

    Objective To investigate the network reorganization and dynamic brain activity in visuospatial neglect (VSN) patients using resting-state electroencephalography (rEEG), and to develop classification models to facilitate its identification. Methods In this retrospective study, stroke patients admitted to the Department of Rehabilitation, Xuanwu Hospital, Capital Medical University between August 2022 and December 2024 were included and divided into VSN (n=22) and non-VSN (n=21) groups based on paper-and-pencil assessments. A healthy control group (n=20) was also recruited. Microstate segmentation and graph-theoretical analysis were applied to rEEG data to extract microstate parameters and topological network features. Four machine learning models (logistic regression, naïve Bayes, k-nearest neighbors, and decision tree) were built for classification. Results Compared with the non-VSN group, the VSN group showed significantly increased mean duration and time coverage in microstate C, and significantly decreased coverage and occurrence in microstate D. Graph-theoretical analysis revealed higher average clustering coefficients in the VSN group. Degree centrality in the frontal-central regions (C1, CZ) was significantly lower, while that in the parietal-occipital regions (P5, P3, PO7, PO5) was significantly higher than in the non-VSN group. Among the classification models, logistic regression and naïve Bayes models performed best, with the mean duration of microstate C contributing most to classification performance. Conclusions Patients with VSN exhibit distinct alterations in electroencephalography microstate dynamics and functional network topology. Microstate parameters play a crucial role in distinguishing VSN from non-VSN stroke cases, and combining these features with machine learning offers a promising approach for early identification and personalized intervention of VSN.

    Release date:2025-07-29 05:02 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content