Emotion is a crucial physiological attribute in humans, and emotion recognition technology can significantly assist individuals in self-awareness. Addressing the challenge of significant differences in electroencephalogram (EEG) signals among different subjects, we introduce a novel mechanism in the traditional whale optimization algorithm (WOA) to expedite the optimization and convergence of the algorithm. Furthermore, the improved whale optimization algorithm (IWOA) was applied to search for the optimal training solution in the extreme learning machine (ELM) model, encompassing the best feature set, training parameters, and EEG channels. By testing 24 common EEG emotion features, we concluded that optimal EEG emotion features exhibited a certain level of specificity while also demonstrating some commonality among subjects. The proposed method achieved an average recognition accuracy of 92.19% in EEG emotion recognition, significantly reducing the manual tuning workload and offering higher accuracy with shorter training times compared to the control method. It outperformed existing methods, providing a superior performance and introducing a novel perspective for decoding EEG signals, thereby contributing to the field of emotion research from EEG signal.
Emotion recognition refers to the process of determining and identifying an individual's current emotional state by analyzing various signals such as voice, facial expressions, and physiological indicators etc. Using electroencephalogram (EEG) signals and virtual reality (VR) technology for emotion recognition research helps to better understand human emotional changes, enabling applications in areas such as psychological therapy, education, and training to enhance people’s quality of life. However, there is a lack of comprehensive review literature summarizing the combined researches of EEG signals and VR environments for emotion recognition. Therefore, this paper summarizes and synthesizes relevant research from the past five years. Firstly, it introduces the relevant theories of VR and EEG signal emotion recognition. Secondly, it focuses on the analysis of emotion induction, feature extraction, and classification methods in emotion recognition using EEG signals within VR environments. The article concludes by summarizing the research’s application directions and providing an outlook on future development trends, aiming to serve as a reference for researchers in related fields.
To accurately capture and effectively integrate the spatiotemporal features of electroencephalogram (EEG) signals for the purpose of improving the accuracy of EEG-based emotion recognition, this paper proposes a new method combining independent component analysis-recurrence plot with an improved EfficientNet version 2 (EfficientNetV2). First, independent component analysis is used to extract independent components containing spatial information from key channels of the EEG signals. These components are then converted into two-dimensional images using recurrence plot to better extract emotional features from the temporal information. Finally, the two-dimensional images are input into an improved EfficientNetV2, which incorporates a global attention mechanism and a triplet attention mechanism, and the emotion classification is output by the fully connected layer. To validate the effectiveness of the proposed method, this study conducts comparative experiments, channel selection experiments and ablation experiments based on the Shanghai Jiao Tong University Emotion Electroencephalogram Dataset (SEED). The results demonstrate that the average recognition accuracy of our method is 96.77%, which is significantly superior to existing methods, offering a novel perspective for research on EEG-based emotion recognition.
Existing emotion recognition research is typically limited to static laboratory settings and has not fully handle the changes in emotional states in dynamic scenarios. To address this problem, this paper proposes a method for dynamic continuous emotion recognition based on electroencephalography (EEG) and eye movement signals. Firstly, an experimental paradigm was designed to cover six dynamic emotion transition scenarios including happy to calm, calm to happy, sad to calm, calm to sad, nervous to calm, and calm to nervous. EEG and eye movement data were collected simultaneously from 20 subjects to fill the gap in current multimodal dynamic continuous emotion datasets. In the valence-arousal two-dimensional space, emotion ratings for stimulus videos were performed every five seconds on a scale of 1 to 9, and dynamic continuous emotion labels were normalized. Subsequently, frequency band features were extracted from the preprocessed EEG and eye movement data. A cascade feature fusion approach was used to effectively combine EEG and eye movement features, generating an information-rich multimodal feature vector. This feature vector was input into four regression models including support vector regression with radial basis function kernel, decision tree, random forest, and K-nearest neighbors, to develop the dynamic continuous emotion recognition model. The results showed that the proposed method achieved the lowest mean square error for valence and arousal across the six dynamic continuous emotions. This approach can accurately recognize various emotion transitions in dynamic situations, offering higher accuracy and robustness compared to using either EEG or eye movement signals alone, making it well-suited for practical applications.