west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Endothelial cells" 36 results
  • EFFECT OF SURFACE PROPERTY OF DIFFERENT POLYETHER-ESTER COPOLYMERS ON GROWTH OF SMOOTH MUSCLE CELLS AND ENDOTHELIAL CELLS

    Objective To investigate the effect of surface propertyof different polyether-ester block copolymers[poly(ethylene glycol-terephthalate)/poly(butylene terephthalate), PEGT/PBT] on the growth of smooth muscle cells (SMCs) and endothelial cells(ECs). Methods Three kinds of copolymers were synthesized, which were 1000-T20 (group A), 1000PEGT70/PBT30 (group B) and 600PEGT70/PBT30 (group C). The water-uptake and contact angle of three polyether-ester membranes were determined. The canine aorta smooth muscle cells and external jugular vein endothelial cells were primarily harvested, subcultured, and then identified. The proliferation of SMCs and ECs on the different polyether-ester membranes were investigated. Results The water-uptake of three copolymers arranged as the sequence of group C<group A<group B, and contact angle as the sequence of group C>group A>group B, indicating group B being more hydrophilic. However, smooth musclecells andendothelial cells grew poorly on the membrane of group B after low density seeding, but proliferated well on the membranes of group A and group C. Conclusion In contrast with more hydrophilic 1000PEGT70/PBT30, moderately hydrophilic 1000-T20 and 600PEGT70/PBT30 has better compatibility with vascular cells. The above results indicate that the vascular cells can grow well on moderately hydrophilic PEGT/PBT and that PEGT/PBT can be used in vascular tissue engineering. 

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • The protective effect of Arginase inhibitor on retinal microvascular endothelial cells in high glucose cultures

    Objective To investigate the effect of arginase (Arg) inhibitor N-ω-Hydroxy-L nor-Arginine (nor-NOHA) on high glucose cultured rhesus macaque retinal vascular endothelial cell line (RF/6A) in vitro. Methods The RF/6A cells were divided into the following 4 groups: normal control group (5.0 mmol/L of glucose, group A), high glucose group (25.0 mmol/L, group B), high glucose with 125 mg/L nor-NOHA group (group C), and high glucose with 1% DMSO group (group D). The proliferation, migration ability and angiogenic ability of RF/6A cells were measured by Methyl thiazolyl tetrazolium (MTT), transwell chamber and tube assay respectively. The express of Arg I, eNOS, iNOS mRNA of RF/6A cells were measured by real-time polymerase chain reaction (RT-PCR), Enzyme-linked immuno sorbent assay (ELISA) was used to detect the expression of NO and interleukine (IL)-1b of RF/6A cells. Results The proliferation, migration, and tube formation ability of group A (t=2.367, 5.633, 7.045;P<0.05) and group C (t=5.260, 6.952, 8.875;P<0.05) were significantly higher than group B. RT-PCR results showed the Arg I and iNOS expression in group B was higher than that in group A (t=6.836, 3.342;P<0.05) and group C (t=4.904, 7.192;P<0.05). The eNOS expression in group B was lower than that in group A and group C (t=4.165, 6.594;P<0.05). ELISA results showed NO expression in group B was lower than that in group A and group C (t=4.925, 5.368;P<0.05). IL-1b expression in group B was higher than that in group A and group C (t=5.032, 7.792;P<0.05). Conclusions Nor-NOHA has a protective effect on cultured RF/6A cells in vitro and can enhance its proliferation, migration and tube formation. The mechanism may be inhibiting the oxidative stress by balancing the expression of Arg/NOS.

    Release date:2017-05-15 12:38 Export PDF Favorites Scan
  • Inhibition of expression of vascular endothelial growth factor by interfering RNA targeting hypoxia inducible factor1α and vascular endothelial growth factor in human vascular endothelial cells

    Objective To investigate the effect of small interfering RNA(siRNA) targeting hypoxia inducible factor1alpha; (HIF1alpha;) and vascular endothelial growth factor (VEGF) on expression of VEGF in human vascular endothelial cells. Methods HIF-1alpha; siRNA recombinant plasmid was constructed. Human vascular ndothelial cells were cultured in vitro and divided into normoxia group (20% O2) and hypoxia group (1% O2). Hypoxia group was then divided into control group, vector group, HIF-1alpha; group (HIF-1alpha; siRNA), VEGF group ( VEGF165  siRNA) and cotransfection group (HIF-1alpha; siRNA+VEGF165 siRNA). LipofectamineTM 2000 (LF2000) mediated vector plasmid was transfected to cells in each group except the control group. The expression of HIF-1alpha; siRNA and VEGF165 siRNA recombinant plasmid were identified by reverse transcriptasepolymerase chain reaction (RT-PCR). The expression of VEGF mRNA and protein were detected by RTPCR and immunocytochemical method. Results The expression of HIF-1alpha; siRNA and VEGF165 si RNA recombinant plasmid were detected 24 hours after transfected. The expression of VEGF mRNA and protein was faint in the normoxia group, but increased obviously in hypoxia group. The expression of VEGF mRNA and protein in the HIF1alpha;, VEGF and cotransfection groups were lower than which in the control group. Cotransfection group showed the highest inhibitory effect. Conclusion HIF-1alpha; and VEGF165 siRNA can effectively inhibit the expression of VEGF in human vascular endothelial cells.

    Release date:2016-09-02 05:48 Export PDF Favorites Scan
  • Role of thrombospondin-1 active fragment VR-10 synthetic peptide on rhesus choroidal-retinal endothelial cell

    ObjectiveTo investigate the effects of thrombospondin-1 active fragment (TSP-1) synthetical peptide VR-10 on proliferation and migration of rhesus choroidal-retinal endothelial (RF/6A) cell and the expressions of apoptosis relative genes in RF/6A cell. MethodsThe survival rate of RF/6A cell were detected by methyl thiazolyl tetrazolium, and migration ability was measured by transwell chamber after exposure to 1.0 μg/ml TSP-1 and synthetic peptide VR-10 (0.1, 1.0, 10.0 μg/ml) for different times (6, 12, 24, 48 hours). Caspase-3 and factor associated suicide (FAS) protein levels were measured by Western blot. The mRNA level of bcl-2 and FAS ligand (FASL) were measured by reverse transcription-polymerase chain reaction (RT-PCR). ResultsThe survival rate of RF/6A cells was determined by the treatment time and concentration of TSP-1(1.0 μg/ml) and the synthetic peptide VR-10 (0.1, 1.0, 10.0 μg/ml). The lowest survival ratio of RF/6A was 78% (P < 0.001) when cells were treated by 10 μg/ml synthetic peptide VR-10 after 48 hours. TSP-1 and synthetic peptide VR-10 could inhibit migration of RF/6A cells in transwell chamber (P < 0.001). 10.0 μg/ml synthetic peptide VR-10 had the strongest effect, 1.0 μg/ml TSP-1 was the next. Migration inhibition rate was increase with the increase of the concentration of VR-10 (P < 0.001). There was no significant differences between 0.1 μg/ml and 1.0 μg/ml VR-10 (P=0.114). Western bolt showed that RF/6A cell in control group mainly expressed the 32×103 procaspase-3 forms. To 10.0 μg/ml VR-10 treated group, it showed decreased expression of procaspase-3 (32×103) and concomitant increased expression of its shorter proapoptotic forms (20×103). Compared with control group, expression of FAS peptides were significantly increased in 10.0 μg/ml VR-10 treated group. Compared with control group, expression of FasL mRNA was significantly increased in 10.0 μg/ml VR-10 treated group(t=39.365, P=0.001), but the expression of bcl-2 mRNA was decreased(t=-67.419, P=0.000). ConclusionTSP-1 and synthetic peptide VR-10 had the ability to inhibit proliferation and migration of endothelial cell, and also induce apoptosis by increasing FAS/FASL expression and repressing bcl-2 expression.

    Release date: Export PDF Favorites Scan
  • Effect of minocycline for expression of vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2 in hypoxia chorioretinal endothelial cells of monkeys

    Objective To observe the expression of vascular endothelial growth factor receptor-1 (VEGFR-1) and VEGFR-2 in hypoxic chorioretinal endothelial cells of monkeys (RF/6A), and to evaluate the effect of minocycline. Methods RF/6A was cultured and divided into four groups: control group, hypoxia group, hypoxia and low dose of minocycline group (0.5 mu;mol/L), hypoxia and medium dose of minocycline group (5 mu;mol/L), and hypoxia and high dose of minocycline group (50 mu;mol/L). Real-time reverse transcriptionpolymerase chain reaction (RT-PCR) and immunohistopathological staining were used to measure the mRNA and protein expression of VEGFR-1 and VEGFR-2, respectively. Results RT-PCR showed that the expression of VEGFR-1 mRNA did not vary significantly between groups (F 24 h=0.17,F 48 h=1.53,F72 h=2.04;P>0.05). Compared with hypoxia group, the expression of VEGFR-2 mRNA in all minocycline treated groups were significantly downregulated (low minocycline, medium minocycline, high minocycline: t=4.69, 20.16, 17.12; P<0.001). The immunohistopathological study showed the cells with positive staining of VEGFR-1 can be observed in all groups, and the staining was relatively weak and mainly located in cell membrane and cytoplasm. The optical density value analysis showed that the protein expression of VEGFR-1 did not vary significantly between groups at all time points(F 24 h=0.251,F 48 h=0.340,F72 h=0.589;P>0.05). The VEGFR-2 positive staining cells were also observed in all groups, and the staining was relatively high. Brown staining particles of VEGFR-2 were observed in the cell membrane with minor staining particles in cytoplasm. The staining density of VEGFR-2 was significantly higher in hypoxia group than control group. Compared with the hypoxia group, the protein expression of VEGFR-2 in minocycline treated groups was significantly lower(F 24 h=19.147,F 48 h=14.893,F72 h==11.984; P<0.05). Conclusion The expression of VEGFR-2 is upregulated in RF/6A, and minocycline somewhat shows an inhibition effect.

    Release date:2016-09-02 05:18 Export PDF Favorites Scan
  • Influence of ataxia-telangiectasia mutated activation on cellular oxidative stress induced by high glucose in bovine retinal capillary endothelial cells

    ObjectiveTo investigate the influence of Ataxia-telangiectasia mutated (ATM) activation on cellular oxidative stress induced by high glucose in bovine retinal capillary endothelial cells(BRECs). Methods The BRECs were treated by different culture medium with various glucose concentrations (5 mmol/L glucose, 30 mmol/L glucose, 30 mmol/L glucose+10 μmol/L KU55933) as normal glucose group, high glucose group and treatment group respectively.After the cells incubated for 48 hours, the protein expression of ATM, P-ATM, Mitogen-Activated Protein Kinase P38(P38), P-P38, Extracellular signal-regulated kinases(ERKs), P-ERKs was detected by Western blot; cellular ROS level was detected by Reactive Oxygen Species Assay Kit; propidium iodide/Hoechst staining was used for analysis of apoptosis; the expression of vascular endothelial growth factor (VEGF) in the supernatant was determined by Enzyme-Linked Immunosorbent Assay (ELISA); the paracellular permeability between endothelium cells was detected by FITC-dextran. ResultsCompared with the protein level of P-ATM, P-P38 and P-ERKs in high glucose group increased. Especially, P-P38, P-ERKs expressed much more than in high glucose group. The secretion of VEGF in high glucose group was higher than that in the normal glucose group but less than that in treatment group. The same tendency existed in ROS assay, apoptosis assay and paracellular permeability measuring. ConclusionsHigh glucose induced altered activation of ATM which might play a protective role in cellular oxidative stress. Deficiency of ATM might lead to ROS explosion, cell apoptosis and dysfunction of endothelial barrier. The mechanism might be associated with P38, ERKs and VEGF.

    Release date: Export PDF Favorites Scan
  • Effect of bone morphogenetic protein 4 on glycolysis of human retinal vascular endothelial cells

    Objective To explore the effect of bone morphogenetic protein 4 (BMP4) on the glycolysis level of human retinal microvascular endothelial cells (hRMECs). MethodsA experimental study. hRMECs cultured in vitro were divided into normal group, 4-hydroxynonenal (HNE) group (4-HNE group) and 4-HNE+BMP4 treatment group (BMP4 group). 4-HNE group cell culture medium was added with 10 μmmol/L 4-HNE; BMP4 group cell culture medium was added with recombinant human BMP4 100 ng/ml after 6 h stimulation with 10 μmol/L 4-HNE. The levels of intracellular reactive oxygen species (ROS) were detected by flow cytometry. The effect of 4-HNE on the viability of cells was detected by thiazole blue colorimetry. Cell scratch test and Transwell cell method were used to determine the effect of 4-HNE on cell migration. The relative expression of BMP4 and SMAD9 mRNA and protein in normal group and 4-HNE group were detected by real-time quantitative polymerase chain reaction and Western blot. Seahorse XFe96 cell energy metabolism analyzer was used to determine the level of intracellular glycolysis metabolism in normal group, 4-HNE group and BMP4 group. One-way analysis of variance was used for comparison between groups. ResultsThe ROS levels in hRMECs of normal group, 4-HNE group and BMP4 group were 21±1, 815±5, 810±7, respectively. Compared with the normal group, the levels of ROS in the 4-HNE group and the BMP4 group were significantly increased, and the difference was statistically significant (F=53.40, 50.30; P<0.001). The cell viability in the normal group and 4-HNE group was 1.05±0.05 and 1.28±0.05, respectively; the migration rates were (0.148±0.005)%, (0.376±0.015)%; the number of cells passing through the pores were 109.0±9.6, 318.0±6.4, respectively. Compared with the normal group, the 4-HNE group had significantly higher cell viability, cell migration rate, and the number of cells passing through the pores, and the differences were statistically significant (F=54.35, 52.84, 84.35; P<0.05). The relative expression levels of BMP4 and SMAD9 mRNA in the cells of the 4-HEN group were 1.680±0.039 and 1.760±0.011, respectively; compared with the normal group, the difference was statistically significant (F=53.66, 83.54; P<0.05). The relative expression levels of BMP4 and SMAD9 proteins in the cells of the normal group and 4-HEN group were 0.620±0.045, 0.860±0.190, 0.166±0.049, 0.309±0.038, respectively; compared with the normal group, the differences were statistically significant (F=24.87, 53.84; P<0.05). The levels of intracellular glycolysis, glycolytic capacity and glycolytic reserve in normal group, 4-HNE group and BMP4 group were 1.21±0.12, 2.84±0.24, 1.78±0.36, 2.59±0.11, 5.34±0.32, 2.78±0.45 and 2.64±0.13, 5.20±0.28, 2.66±0.33. Compared with the normal group, the differences were statistically significant (4-HNE group: F=86.34, 69.75, 58.45; P<0.001; BMP4 group: F=56.87, 59.35, 58.35; P<0.05). There was no significant difference in intracellular glycolysis, glycolysis capacity and glycolysis reserve level between 4-HNE group and BMP4 group (F=48.32, 56.33, 55.01; P>0.05). ConclusionBMP4 induces the proliferation and migration of hRMECs through glycolysis.

    Release date:2022-11-16 03:11 Export PDF Favorites Scan
  • Research progress on vascularization of organoids

    Organoids are three-dimensional structures formed by self-organizing growth of cells in vitro, which own many structures and functions similar with those of corresponding in vivo organs. Although the organoid culture technologies are rapidly developed and the original cells are abundant, the organoid cultured by current technologies are rather different with the real organs, which limits their application. The major challenges of organoid cultures are the immature tissue structure and restricted growth, both of which are caused by poor functional vasculature. Therefore, how to develop the vascularization of organoids has become an urgent problem. We presently reviewed the progresses on the original cells of organoids and the current methods to develop organoids vascularization, which provide clues to solve the above-mentioned problems.

    Release date: Export PDF Favorites Scan
  • The effect of ginsenoside Rg3 on human retinal capillary endothelial cells cultured in normal and hypoxia condition

    Objective To observe the effect of ginsenoside Rg3 on the proliferation, migration, and tube formation of human retinal capillary endothelial cell (HRCEC) cultured in normal and hypoxia condition. Methods HRCEC was cultured in normal condition and treated with 0.0 mmol/L (group A), 0.1 mmol/L (group B) and 0.5 mmol/L (group C) ginsenoside Rg3. HRCEC was also cultured in hypoxia condition and treated with 0.0 mmol/L (group D), 0.1 mmol/L (group E) and 0.5 mmol/L (group F) ginsenoside Rg3. The effects of ginsenoside Rg3 on HRCEC proliferation were measured by methylthiazoletrazolium assay in 24, 48 and 72 hours after culture. In 24 hours after culture, the effect of cell migration was evaluated by transwell chamber; the effect of tube formation was evaluated by Matrigel; the expression of vascular endothelial growth factor (VEGF) protein and mRNA were detected by Western blot and real-time quantitative reverse transcription-polymerase chain reaction. Results Ginsenoside Rg3 could inhibit proliferation of HRCEC, depending on the concentration (F=30.331 and 33.402 in normal and hypoxia condition, respectively; P<0.05) and time (F=85.462 and 136.045 in normal and hypoxia condition, respectively; P<0.05). The number of cell migration was 103.33plusmn;3.54, 92..25plusmn;3.68, 78.64plusmn;4.66 in group A, B and C, the difference among three groups was statistically significant (F=28.801, P<0.05). The number of cell migration was 125.76plusmn;3.11, 90.27plusmn;3.55, 77.81plusmn;5.01 in group D, E and F, the difference among three groups was statistically significant (F=117.594, P<0.05). The number of tube formed in Matrigel was 24.3plusmn;2.2, 15.7plusmn;1.7, 10.1plusmn;2.3 in group A, B and C, the difference among three groups was statistically significant (F=35.364, P<0.05). The number of tube formed in Matrigel was 26.2plusmn;1.9, 15.1plusmn;2.6, 8.6plusmn;1.9 in group D, E and F, the difference among three groups was statistically significant (F=50.989, P<0.05). The expression of VEGF mRNA was 1.00plusmn;0.06, 0.79plusmn;0.06, 0.68plusmn;0.02 in group A, B and C, the difference among three groups was statistically significant (F=31.303, P<0.05). The expression of VEGF mRNA was 3.88plusmn;0.12, 2.83plusmn;0.09, 1.15plusmn;0.05 in group D, E and F, the difference among three groups was statistically significant (F=682.668, P<0.05). The expression of VEGF protein was 0.62plusmn;0.03, 0.41plusmn;0.02, 0.32plusmn;0.02 in group A, B and C, the difference among three groups was statistically significant (F=125.471, P<0.05). The expression of VEGF protein was 0.91plusmn;0.03, 0.82plusmn;0.03, 0.71plusmn;0.02 in group D, E and F, the difference among three groups was statistically significant (F=41.045, P<0.05). Conclusion Ginsenoside Rg3 can inhibit the proliferation, migration, and tube formation of HRCEC through the inhibition of VEGF expression.

    Release date:2016-09-02 05:21 Export PDF Favorites Scan
  • Correlation between heparanase and vascular endothelial growth factor in human retinal microvascular endothelial cells induced by hypoxia

    Objective To investigate the effects of heparanase and vascular endothelial growth factor (VEGF) and their correlation in CoCl2 induced human retinal microvascular endothelial cells (HRECs) in an hypoxia model. Methods Human eyes were selected to establish CoCl2induced HRECs hypoxia model in this study. Four experimental groups were studied: normal control group, hypoxia group (CoCl2 100 μmol/L, 48 hours),PI-88 group (specific competitive inhibitor of heparanase: phosphomannopentaose sulfate, PI-88,5 μg/ml, combined with CoCl2 100 μmol/L, 48 hours) and PBS control group. Heparanase, VEGF and Pol Ⅱ expression in HRECs of normal and hypoxia group were analyzed with immunofluorescence. Western blot was used to evaluate the expression of heparanase and VEGF in HRECs of normal, hypoxia, PI88 and PBS control groups. ResultsImmunofluorescence studies showed that the expression of heparanase and VEGF in cytoplasm was intense in hypoxia HRECs, but faint in normal group. Heparanase was also observed in the nucleus of hypoxia HRECs. Western blot results showed that the expression of Hpa and VEGF protein was increased significantly in hypoxia group compared with normal group (Hpa:F=-4。005, P<0.05;VEGF:F=-4.063, P<0.05), and VEGF was decreased in HRECs treated with PI-88(F=5。963, P<0.05). ConclusionsHeparanase is upregulated that resulted in increase of VEGF expression, therefore enhanced angiogenesis in CoCl2 induced hypoxia HRECs. 

    Release date:2016-09-02 05:25 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content