west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Hypertrophic scar" 22 results
  • GENE EXPRESSION OF STRESS ACTIVATED PROTEIN KINASE AND ITS MAPKS IN HYPERTROPHIC SCAR

    Objective To explore the change of gene expression of stress activated protein kinase (SAPK) and its upstream signalregulated molecule ——mitogen activated protein kinases(MAPKs) (MKK4 and MKK7) in hypertrophic scar and autocontrol normal skin. Methods The total RNA was isolated from 8 hypertrophic scars and 8 auto-control skin, and then mRNA was purified. The gene expressions of MKK4, MKK7 and SAPK were examined with reverse transcriptionpolymerase chain reaction(RT-PCR) method. Results In hypertrophic scar, both MKK7 and SAPK genes weakly expressed. In auto-control skin, the expression of these 2 genes was significantly elevated in comparison with hypertrophic scar (Plt;0.01). The expression levelsof these 2 genes were 1.5 times and 2.6 times as long as those of hypertrophic scar, respectively. Gene expression of MKK4 had no significant difference between autocontrol skin and hypertrophic scar (Pgt;0.05). Conclusion Decreased gene expression of MKK7 and SAPK which results in reducing cell apoptosis might be one of the mechanisms for controlling the formation of hypertrophic scar.

    Release date: Export PDF Favorites Scan
  • ABSTRACTSOBSERATION OF THE ULTRASTRUCTURES OF THE KELOID AND HYPERTROPHIC SCAR

    The ultrastructures of 14 keloids and 7 hypertrophic scars were examined by electron micrascopy.Both lesions were found to be comprised of fibroblasts, macrophages, microfi brils of collagen andmicrovessels which were partly or completely obliterated. Most fibroblasts were of active cell types.They contained abundant coarse endoplasmic reticulum and prominent Golgi complexes. The fibrils inthe lesions were irtegularly arranged. Meanwhile myofibroblasts were often seen in the keloid.In the cytoplasm of the myofibroblasts, in addition to coarse endoplasmic reticulum and Golgi complexes, many fine myofilaments, dense bodies, dense patches and distrupted basal lamina were present. These characteristic features might help to differentiate keloid from hypertrophic sacr.

    Release date:2016-09-01 11:18 Export PDF Favorites Scan
  • STUDY OF THE EXPRESSION OF HEAT SHOCK PROTEIN 47 AND ITS CORRELATION TO COLLAGEN DEPOSITION IN PATHOLOGICAL SCAR TISSUES

    Objective To study the expression of heat shock protein 47 (HSP47) and its correlation to collagen deposition in pathological scar tissues. Methods The tissues of normal skin(10 cases), hypertrophic scar(19 cases), and keloid(16 cases) were obtained. The expression ofHSP47 was detected by immunohistochemistry method. The collagen fiber content was detected by Sirius red staining and polarization microscopy method. Results Compared with normal skin tissues(Mean IOD 13 050.17±4 789.41), the expression of HSP47 in hypertrophic scar(Mean IOD -521 159.50±272994.13) and keloid tissues(Mean IOD 407 440.30±295 780.63) was significantly high(Plt;0.01). And there was a direct correlation between the expression of HSP47 and the total collagen fiber content(r=0.386,Plt;0.05). Conclusion The HSP47 is highly expressed in pathological scartissues and it may play an important role in the collagen deposition of pathological scar tissues.

    Release date:2016-09-01 09:27 Export PDF Favorites Scan
  • DIFFERENT EXPRESSION OF CHAPERONE INTERACTING PROTEIN IN NORMAL,SCAR AND CHRONIC ULCER TISSUES AND ITS RELATIONSHIP WITH WOUND HEALING

    Objective To explore the expression characteristics of chaperone interacting protein (CHIP) in normal, scar and chronic ulcer tissues and its relationship with wound healing. Methods Twenty biopsies including scar tissues(n=8), chronic ulcer tissues(n=4) and normal tissues(n=8)were used in this study. The immunohistochemical staining (power visionTMtwo-step histostaining reagent) was used to explore the amount and expression characteristics of such protein.Results The positive expression of CHIP was observed in fibroblasts, endothelial cells and epidermal cells in dermis and epidermis. It was not seen ininflammatory cells. The expression amount of CHIP in scar tissues, chronic ulcer tissues and normal tissues was 89%, 83% and 17% respectively. Conclusion Although the function of CHIP is not fully understood at present, the fact that this protein is expressed only at the mitogenic cells indicates that it may be involved in mitogenic regulation during wound healing.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • CHARACTERISTICS OF P38 MITOGEN-ACTIVATED PROTEIN KINASE AND c-Jun EXPRESSION IN HYPERTROPHIC SCAR AND THEIR EFFECTS ON SCAR FORMATION

    OBJECTIVE: To observe the protein expression of phosphorylated form of P38 mitogen-activated protein kinase(P38MAPK) and c-Jun in hypertrophic scar skin and to explore their influences on the formation and maturation of hypertrophic scar. METHODS: The expression intensity and distribution of phosphorylated form of P38MAPK and c-Jun were examined with immunohistochemistry and pathological methods in 16 cases of hypertrophic scar skin and 8 cases of normal skin. RESULTS: In normal skin, the positive signals of phosphorylated form of P38MAPK mostly distributed in basal lamina cells of epidermis, while c-Jun was mainly located in epidermal cells and endothelial cells. The positive cellular rates of two proteins were 21.3% +/- 3.6% and 33.4% +/- 3.5% respectively. In proliferative hypertrophic scar skin, the particles of phosphorylated P38MAPK and c-Jun were mainly located in epidermal cells and some fibroblasts. The positive cellular rates of two proteins were significantly elevated to 69.5% +/- 3.3% and 59.6% +/- 4.3% respectively (P lt; 0.01). In mature hypertrophic scar, the expression of these proteins decreased but was still higher than that of normal skin. CONCLUSION: The formation and maturation of hypertrophic scar might be associated with the alteration of phosphorylated P38MAPK and c-Jun protein expression in hypertrophic scar.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • CHARACTERISTICS AND EFFECT OF THREE TRANSFORMING GROWTH FACTOR -β ISOFORMS AND THEIR RECEPTOR(I) ON SCAR FORMATION

    Objective To observe the differences in protein contents of three transforming growth factorbeta(TGF-β) isoforms, β1, β2, β3 andtheir receptor(I) in hypertrophic scar and normal skin and to explore their influence on scar formation. Methods Eight cases of hypertrophic scar and their corresponding normal skin were detected to compare the expression and distribution of TGF-β1, β2, β3 and receptor(I) with immunohistochemistry and common pathological methods. Results Positive signals of TGF-β1, β2, and β3 could all be deteted in normal skin, mainly in the cytoplasm and extracellular matrix of epidermal cells; in addition, those factors could also be found in interfollicular keratinocytes and sweat gland cells; and the positive particles of TGF-β R(I) were mostly located in the membrane of keratinocytes and some fibroblasts. In hypertrophic scar, TGF-β1 and β3 could be detected in epidermal basal cells; TGFβ2 chiefly distributed in epidermal cells and some fibroblast cells; the protein contents of TGF-β1 and β3 were significantly lower than that of normal skin, while the change of TGF-β2 content was undistinguished when compared withnormalskin. In two kinds of tissues, the distribution and the content of TGF-β R(I) hadno obviously difference. ConclusionThe different expression and distribution of TGF-β1, β2 andβ3 between hypertrophic scar and normal skin may beassociated with the mechanism controlling scar formation, in which the role of the TGF-βR (I) and downstream signal factors need to be further studied.

    Release date: Export PDF Favorites Scan
  • INHIBITORY EFFECT OF HUMAN COL I A1 ANTISENSE OLIGODEOXYNEUCLEOTIDE ON COLLAGEN SYNTHESIS IN HYPERTROPHIC SCAR FIBROBLASTS/

    To investigate the inhibitory effect of Col I A1 antisense ol igodeoxyneucleotide (ASODN) transfection mediated by cationic l iposome on Col I A1 expression in human hypertrophic scar fibroblasts. Methods Scar tissue was obtained from volunteer donor. Human hypertrophic scar fibroblasts were cultured by tissue block method. The cells at passage 4 were seeded in a 6 well cell culture plate at 32.25 × 104 cells/well, and then divided into 4 groups: group A, l iposomeand Col I A1 ASODN; group B, Col I A1 ASODN; group C, l iposome; group D, blank control. At 8 hours, 1, 2, 3 and 4 days after transfection, total RNA of the cells were extracted, the expression level of Col I A1 mRNA was detected by RT-PCR, the Col I A1 protein in ECM was extracted by pepsin-digestion method, its concentration was detected by ELISA method. Results Agarose gel electrophoresis detection of ampl ified products showed clear bands without occurrence of indistinct band, obvious primer dimmer and tailing phenomenon. Relative expression level of Col I A1 mRNA: at 8 hours after transfection, group A was less than groups B, C and D (P lt; 0.05), and groups B and C were less than group D (P lt; 0.05), and no significant difference was evident between group B and group C (Pgt; 0.05); at 1 day after transfection, groups A and B were less than groups C and D (P lt; 0.05), and there was no significant difference between group A and group B, and between group C and group D (P gt; 0.05 ); at 2 days after transfection, there were significant differences among four groups (P lt; 0.05); at 3 and 4 days after transfection, group A was less than groups B, C and D (P lt; 0.05), group B was less than groups C and D (P lt; 0.05), and no significant difference was evident between group C and group D (P gt; 0.05). Concentration of Col I protein: at 8 hours after transfection, group A was less than groups B, C and D (P lt; 0.05), groups B and C were less than group D (P lt; 0.05), and no significant difference was evident between group B and group C (P gt; 0.05); at 1 day after transfection, significant differences were evident among four groups (P lt; 0.05); at 2, 3 and 4 days after tranfection, groups A and B were less than groups C and D (P lt; 0.05), and no significant difference was evident between group A and group B (P gt; 0.05). Conclusion Col I A1 ASODN can inhibit mRNA and protein expression level of Col I A1. Cationic l iposome, as the carrier, can enhance the inhibition by facil itating the entry of ASODN into cells and introducing ASODN into cell nucleus.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • OBSERVATION OF CICATRICIAL FIBROBLASTS IN CULTURE AND ITS BIOLOGICAL PROPERTIES

    In order to study the biological properties of fibroblasts isolated from different tissues. The fibroblasts from normal skin, hypertrophic scar and keloid were cultured, respectively, in vitro, and their morphologies and growth kinetics were compared. The results revealed that although fibroblasts in keloid were irregularly arranged, crisscross and overlapping with loss of polarization, there was no significant difference in the 3 groups so far the cellular morphology of fibroblast itself, cellular growth curve, cellular mitotic index, cloning efficiency and DNA content provided those cultures were in the same cellular density and culture conditions. It was concluded that fibroblasts isolated from culture of normal skin, hypertrophic scar and keloid in vitro showed no significant difference in morphology and growth kinetics, on the contrary, their biological behaviors were quite similar.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • EXPRESSION OF β-ENDORPHIN IN HYPERTROPHIC SCAR AND ITS RELATIONSHIP WITH PRURITUS

    Objective To identify the effect of β-endorphin in the development of paresthesia in hypertrophic scar by detecting the expression and content of β-endorphin in human normal skin and hypertrophic scar. Methods Hypertrophic scar samples were collected from 42 patients with hypertrophic scar for 1-20 years (mean, 4.5 years), including 15 males and27 females with an average age of 32.6 years (range, 16-50 years). According to the kind of paresthesia, they were divided into 3 gourps: non-pain-pruritus group (n=20), pruritus group (n=14), and pain-pruritus group (n=8). Normal skin samples (normal skin group) were harvested from 5 patients undergoing skin grafting surgery, including 3 males and 2 females with an average age of 24.6 years (range, 15-37 years). The immunofluorescence method was used to observe the expression of β-endorphin and ELISA method to detect the concentrations of β-endorphin in the tissues. Results The β-endorphin expressed in all samples, and it expressed around peri pheral nerve fibers in the dermis, fibroblasts, and monocytoid cells princi pally; and it expressed significantly ber in pruritus group and pain-pruritus group than in non-pain-pruritus group and normal skin group. The β-endorphin content was (617.401 ± 97.518) pg/mL in non-pain-pruritus group, (739.543 ± 94.149) pg/mL in pruritus group, (623.294 ± 149.613) pg/mL in pain-pruritus group, and (319.734 ± 85.301) pg/mL in normal skin group; it was significantly higher in non-pain-pruritus group, pruritus group, and pain-pruritus group than in normal skin group (P lt; 0.05); it was significantly higher in pruritus group than in non-pain-pruritus group and pain-pruritus group (P lt; 0.05); and there was no significant difference between non-pain-pruritus group and pain-pruritus group (P gt; 0.05). Conclusion The expression of β-endorphin is high in hypertrophic scar, it may paly an important role in process of pruritus in these patients.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • EFFECT OF γ INTERFERON ON THE FIBROBLASTS IN HYPERTROPHIC SCARS

    OBJECTIVE To study the influence and mechanism of gamma-IFN on fibroblasts in hypertrophic scars(HTS). METHODS The cultured fibroblastic cells were isolated from the hypertrophic scars of 10 patients. The fibroblasts were divided into two groups, one group was treated with gamma-IFN (100 U/ml, 5 days) and the other without gamma-IFN as control. The proliferative activity in both groups was investigated and compared by blood cytometer, the proportion of myofibroblast (MFB) and the ratio of apoptosis were examined and analysed between two groups by flow cytometry using alpha-smooth muscle actin (alpha-SMA) as marker. RESULTS The proliferative activity was downregulated with gamma-IFN. In gamma-IFN treated group, the differentiation of MFB were reduced and the decreasing ratio was 3.2% at the 2nd day and up to 10.5% at the 8th day, then it reduced gradually. The apoptosic ratio is 17.7% in gamma-IFN treated group, and is 10.9% in control group. The difference was statistically significant. CONCLUSION gamma-IFN could downregulate the proliferation of fibroblasts, decrease the differentiation of MFB and induce the apoptosis. It has beneficial effect in the treatment of hypertrophic scars(HTS).

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content