Tumor immunotherapy includes immune checkpoint inhibitor (ICI), tumor vaccines, and adoptive cell therapy. Immunotherapy, as the main systemic treatment for advanced malignant tumors, kills tumor cells by activating the immune system and prolongs the survival of patients. However, excessive immune responses can cause immune-related adverse events (irAE), causing damage to systemic tissues. ICI are the main tumor immunotherapy drugs that cause optic nerve irAE. The most common optic nerve irAE are optic neuritis, only a few patients appeared arteritic anterior ischemic optic neuropathy. Sudden painless loss of bilateral vision is the most common clinical manifestation. In severe cases, the vision decrease to no light perception. Early diagnosis and early adequate glucocorticoid treatment can improve the symptoms. Therefore, neuro-ophthalmologists and oncologists should know the clinical characteristics of optic nerve irAE, in order to diagnose and treat early and improve the prognosis.
Objective To investigate the effect of B7-1 and IL-12 gene expression on the immunogenicity of hepatocellular carcinoma (HCC) HepG2 cells. Methods Plasmids encoding B7-1 and IL-12 molecules were retrovirally introduced into human HCC cells,empty vector as control. PBLs were cocultured with HepG2/B7-1,HepG2/IL-12 and HepG2/neo cells. Three days later,PBLs were submitted to specific cytotoxicity test and nonspecific cytotoxicity test against K562 cells by MTT assay.Results HLA-Ⅰ molecules on PBLs were detected by FACS.HLA-Ⅰ molecules expressing on PBL cocultured with HepG2/B7-1,HepG2/IL-12 cells were enhanced by 16.95% and 14.71% than those of HepG2/neo group, respectively(P<0.05). Specific cytotoxicity against HepG2/B7-1 cells was 12.5% higher than that of against HepG2/neo cell,while no increase in that of against HepG2/IL-12 cells. Cytotoxicities against K562 cells in HepG2/B7-1,HepG2/IL-12 groups were 19.38% and 14.78% higher than those of HepG2/neo group, but no significant difference between the first two groups.Conclusion B7-1 and IL-12 gene transfer could remarkably promote immunogenicity of hepatocellular carcinoma cells and induce b specific and nonspecific immunity against hepatocellular carcinoma in vitro.
ObjectivesTo systematically review the clinical response rate of CD19 chimeric antigen receptor modified-T cells (CD19CART) in the treatment of B cell hematological malignancies.MethodsPubMed, EMbase, CNKI, WanFang Data and VIP databases were searched to collect cohort studies about CD19CART in the treatment of B cell hematological malignancies from 2000 to 2016. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Then, a single rate meta-analysis was performed by R software and SPSS 16.0 software.ResultsA total of 13 prospective cohort studies were included. The results of single group rate meta-analysis showed that the overall pooled response rate of CD19 CART was 68% (95%CI 0.51 to 0.82). The 6 months and 1-year PFS after CD19 CART infused by Kaplan-Meier were 46% (95%CI 0.35 to 0.56) and 24% (95%CI 0.16 to 0.34), respectively. The median duration was 180 days (95%CI 138 to 222). The COX regression model showed lymphodepletion to be the only influence factor of PFS.ConclusionsCD19 CART has a good clinical response rate in the treatment of B cell hematological malignancies. Lymphodepletion is the only important impact on the response rate and PFS. Due to limited quality and quantity of included studies, more high quality studies are required to verify the above conclusions.
【Abstract】Objective To explore the effect against gastric cancer induced by Newcastle disease virus modified autologous tumor vaccine (NDV-ATV)pulsed dendritic cells(DCs). Methods The Newcastle disease virus infected the gastric cancer lines (MNK45) and was lost its activity. Peripheral blood mononuclear cell (PBMC) were cultured under condition of recombinant human granulocyte macrophage-colony stimulating factor (1 000 u/ml)+IL-4(1 000 u/ml) + TNF-α(100 ng/ml). The tumor antigen specific cytotoxic T lymphocytes (CTL) was generated from activated autologous T cell by the Newcastle disease virus infected the MNK45 pulsed DC. And Cyto Tox 96TM in vitro assayed the cytotoxicity of CTL to MNK45. Thawed gastric cancer cell antigen were used as control in these experiments. Results The killing rate of MNK45 by antigen specific CTL reached (90.15±9.82)%, which was nearly twice as high as that of control(60.57±5.74)%. The CTL had much higher cytotoxicity to different differentiated type of gastric cancer cells such as MGC803〔(52.23±6.45)% 〕 and SGC7901〔 (61.75±8.84)%〕, as compared with LOVO〔(9.11±3.42)%〕 and HepG2 〔 (8.30±3.12)%〕tumor cells(P<0.05). Conclusion Efficient and specific of against gastric cancer immunoreaction can be induced in virtue of NDV-ATV pulsed DCs, NDV-ATV loaded DCs might provide a new kind of theraputic means for gastric cancer.
Immunotherapy is an important treatment method in tumor therapy. Among them, programmed death-1/programmed death ligand-1 inhibitors are the immune preparations with mature application and great survival benefit at present. Programmed death-1/programmed death ligand-1 inhibitors brought better clinical benefits to patients with esophageal cancer and provided more favorable choice for the treatment of esophageal cancer. This article introduces the mechanism of action, application in esophageal cancer, and efficacy predictors of programmed death protein-1/programmed death protein ligand-1 inhibitors, aiming to provide a theoretical basis for the more rational use of programmed death protein-1/programmed death protein ligand-1 inhibitors in patients with esophageal cancer.
ObjectiveTo explore the antitumor effect of tumor vaccine fused from dendritic cells (DC) and Walker-256 cancer cells on implanted liver cancer in rats and the related mechanism of inhibition for tumor angiogenesis. MethodsWalker-256 cancer cells and mature DC were fused by 50% polyethylene glycol method for preparation of DC-Walker-256 fusion vaccines. Implanted liver cancer models were established through operations on healthy male SD rats at the age of 6-8 weeks. All the rats were divided into four groups, and rats in each group were injected subcutanely with fusion vaccine (group), mixed cultured cells (group), simple DC (group), and PBS (blank control group), respectively. On 28 d after making model, the rats were put to death, the tumor was observed and pathological essays were prepared. All rats’ spleens were collected and prepared into lymphocyte to detect antigenic specificity cytotoxic T lymphocyte (CTL) by enzymelinked immunosorbent spot (ELISPOT) method. The expressions of VEGF, ANG-1, ANG-2, and MVD were detected by immunohistochemistry. ResultsThe numbers of rats survived in the fusion vaccine group, mixed culture cells group, simple DC group, and blank control group was 8, 5, 6, and 3, respectively. The rats in the other three groups except for fusion vaccine group were manifested as inaction, anorexia, and gloomy fur in some degree as well as ascites. The tumorigenesis was found in all survival rats except for two in the fusion vaccine group. The weight of liver tumors of rats in the fusion vaccine group 〔(32.4±9.2) g〕 was significantly lighter than that in the mixed culture cells group 〔(67.3±5.1) g, P=0.031〕, simple DC group 〔(75.0±8.3) g, P=0.019〕, and blank control group 〔(86.6±10.5) g, P=0.008〕, respectively. The number of tumorspecific CTL of rats in the fusion vaccine group was also significantly higher than that in the other three groups (P=0.019, P=0.025, and P=0.001, respectively). The MVD of tumor tissue in the fusion vaccine group was (24.12±2.32) vessels/HP, which was significantly lower than that in the mixed culture cells group 〔(40.34±1.29) vessels/HP, P=0.025〕, simple DC group 〔(42.36±3.16) vessels/HP, P=0.035〕, and blank control group 〔(56.48±5.16) vessels/HP, P=0.006〕, respectively. The MVD of tumor tissue in the mixed cultured cells group and simple DC group was similar (P=0.165), however, which was significantly lower than that in the blank control group (P=0.040 and P=0.043). The positive rate of VEGFA protein expression was 23.2% in the fusion vaccine group, which was significantly lower than that in the mixed culture cells group (42.5%, P=0.031), simple DC group (61.3%, P=0.019), and blank control group (89.6%, P=0.003), respectively. The positive rate of VEGF-A protein expression in the mixed cultured cells and simple DC groups was similar (P=0.089), however, which was significantly lower than that in the blank control group (P=0.027 and P=0.038). The positive rate of ANG-1 protein expression in the fusion vaccine group (43.2%) was not different from that in the mixed culture cells group (46.3%, P=0.292), simple DC group (51.3%, P=0.183), or blank control group (49.6%, P=0.179), respectively, and the difference of pairwise comparison in latter three groups was not significant (P=0.242, P=0.347, and P=0.182). The positive rate of ANG2 protein expression was 19.2% in the fusion vaccine group, which was significantly lower than that in the mixed culture cells group (62.3%, P=0.007), simple DC group (67.3%, P=0.005), and blank control group (71.6%, P=0.004), respectively, however, the difference of pairwise comparison in latter three groups was not significant (P=0.634, P=0.483, and P=0.379). ConclusionFused vaccine can induce CD8+ CTL aiming at tumor cells and establish the effective antitumor immunity in vivo and also downregulate the level of VEGF and ANG-2 to suppress tumor angiogenesis and thereby achieve the purpose of curing tumor.
The specific binding of T cell receptors (TCRs) to antigenic peptides plays a key role in the regulation and mediation of the immune process and provides an essential basis for the development of tumour vaccines. In recent years, studies have mainly focused on TCR prediction of major histocompatibility complex (MHC) class I antigens, but TCR prediction of MHC class II antigens has not been sufficiently investigated and there is still much room for improvement. In this study, the combination of MHC class II antigen peptide and TCR prediction was investigated using the ProtT5 grand model to explore its feature extraction capability. In addition, the model was fine-tuned to retain the underlying features of the model, and a feed-forward neural network structure was constructed for fusion to achieve the prediction model. The experimental results showed that the method proposed in this study performed better than the traditional methods, with a prediction accuracy of 0.96 and an AUC of 0.93, which verifies the effectiveness of the model proposed in this paper.
Objective To review the advance in the experimental studies and evaluate the potential therapeutic application of the mesenchymal stem cells(MSCs). Methods The related articles published in China and theother countries during the recent years were extensively reviewed and analyzed. Results The MSCs were widely used in the cell-transplantation therapy and the tissue engineering because of their pluripotency of differentiation into various kinds of cells. They were also frequently used in the gene therapy because they could stably express the transfected objective genes. Because of their immunomodulatory function, the MSCs could also be used in the immunotherapy. Conclusion The MSCs are the stem cells, which have characteristics of renewing themselves, having multipotency, and being easy to undergo amplification in vitro.The MSCs are ideal target cells for the cell therapy, tissue engineering, gene therapy, and immunotherapy.
Esophageal cancer is one of the malignant tumors that poses a threat to human health, with both high incidence and malignancy. Currently, surgery following neoadjuvant chemoradiotherapy is the standard treatment for locally advanced esophageal cancer; however, the long-term prognosis remains unsatisfactory. In recent years, inhibitors of programmed death protein-1 (PD-1) and its ligand (programmed death ligand-1, PD-L1) have achieved breakthrough progress in other solid tumors, and research on esophageal cancer is gradually being conducted. With the demonstration of good efficacy of PD-1/PD-L1 inhibitors in the first-line and second-line treatment of advanced unresectable esophageal cancer, their incorporation into neoadjuvant treatment regimens has become a hot topic. Therefore, this article reviews the mechanism of action of PD-1/PD-L1 inhibitors and their application in the neoadjuvant treatment of esophageal cancer.
Objective To detect the anti-colon cancer ability of whole cell lysates pulsed dendritic cell (DC) which acts as an adjuvant. Methods Whole cell lysates of LoVo cells were extracted with freeze thawing method, then the monocyte-derived DC were pulsed with this cellular antigen. Subsequently, the capability of antigen pulsed DC to promote T lymphocytes proliferation and the ability of T lymphocytes to kill LoVo cells were detected by 3H-TdR incorporation and lactate dehydrogenase release methods, respectively. Results The whole cell lysates of LoVo cells pulsed DC significantly stimulated T cells proliferation, and the cytotoxicity abilities of primed T cells to kill LoVo cells were also enhanced. Conclusion Tumor cell lysates which act as the cellular antigen to pulse DC can improve the efficacy of anti-cancer immune response, which provides us an experimental evidence for cancer immunotherapy.