Objective To evaluate the effect of exogenous pulmonary surfactant(PS) replacement therapy for infants who suffered pulmonary injury after cardiopulmonary bypass. Methods Seven infants (age 0.49±0 82 year, weight 4.87±2.18kg) who depended on respiratory mechanical support with clinical and radiological evidence of pulmonary surfactant sufficiency were enrolled in the study. Oxygen index(OI), artery oxygen saturation(SaO 2) and artery bicarbonate pressure(PaCO 2) were measured at 4, 6, 12, 24, 48, and 72 h after the first application of PS(100mg/kg). At the meantime, maximum spontaneous respiratory tidal volume, chest X ray changes and ventilator time were recorded. Results Compared to the baseline values, OI and SaO 2 increased significantly 4 h after PS therapy, with a maximal increase slope (34.7%, 6.6%) after 24 h. While PaCO 2 decreased significantly 4 h after PS therapy, with a lowest decrease slope (22.8%) after 6 h ( P lt;0.05, 0.01). Spontaneous tidal volume and chest X ray si...更多gn were improved in all infants. The success rate of extubation was 85 7%. Conclusion Exogenous PS replacement therapy could improve pulmonary function for postoperative infants, and highly decrease the ventilator time.
Objective To study the effects of two different tidal volume mechanical ventilation on lipopolysaccharide( LPS) -induced acute lung injury( ALI) , and explore the effects of glutamine on ALI.Methods Thirty male Sprague-Dawley rats were randomly divided into three groups. After anesthesia and tracheotomy were performed, the rats were challenged with intratracheal LPS ( 5mg/kg) and received ventilation for 4 hours with small animal ventilator. Group A received conventional tidal volume, while groupB received large tidal volume. Group C received large tidal volume as well, with glutamine injected intravenously 1 hour before ventilation. Arterial blood gases were measured every one hour. 4 hours later, the rats were killed by carotid artery bleeding. The total lung wetweightwas measured and lung coefficient ( total lung wet weight /body weight ×100) was counted. WBCs and neutrophils in BALF were counted. Protein concentration, TNF-α, IL-6, and cytokine-induced neutrophil chemoattractant-1 ( CINC-1) levels in BALF,myeloperoxidase ( MPO) , and superoxide dismutase ( SOD) levels in the lung were assayed respectively.Results PaO2 and SOD levels decreased more significantly in group B than those of group A. The lung coefficient, WBCs, neutrophils, protein, TNF-α, IL-6, and CINC-1 levels in BALF, MPO levels in lung increased more significantly in group B than those of group A. PaO2 and SOD levels were significantly higher in group C than those of group B. The lung coefficient, WBCs, neutrophils, protein, TNF-α, IL-6, and CINC-1 levels in BALF,MPO levels in lung were significantly lower in group C than those of group B. Conclusion Large tidal volume mechanical ventilation aggravates LPS-induced ALI, and glutamine has obviouslyprotective effects.
ObjectiveTo summarize the changes and interaction of the cytokine in severe acute pancreatitis associated lung injury. MethodsThe published literatures at domestic and aboard in recent years about severe acute pancreatitis associated lung injury were collected and reviewed. ResultsThe cytokines had a chain effect, and influenced each other when severe acute pancreatitis with lung injury attacked. ConclusionsRelated cytokines play important roles in severe acute pancreatitis associated lung injury. Researching the related cytokines will contribute to the diagnosis and treatment for severe acute pancreatitis with lung injury.
Objective To study the effects of hyperoxia on ventilator-induced lung injury(VILI) in rats.Methods 48 healthy male SD rats were randomly divided into four groups:Group A received conventional mechanical ventilation(VT=8 mL/kg) with room air,Group B received the same tidal volume as group A with 100% O2,Group C received large tidal volume(VT=40 mL/kg) with room air,group D received the same tidal volume as group C with 100% O2.Arterial blood gases were measured every one hour and oxygenation index(PaO2/FiO2) was calculated.The changes of lung histopathology were assessed by HE staining and observed under light microscope.Wet-to-dry weight ratio(W/D) of left lung,neutrophils and white blood cell(WBC) counts in BALF were measured.TNF-α,IL-1β,and MIP-2 levels in BALF,malondialdehyde(MDA),myeloperoxidase(MPO),and superoxide dismutase(SOD) levels in the lung were assayed,respectively.Results Compared with the Group C,the Group D demonstrated more infiltrating neutrophils in the lung and more destructive changes in the alveolar wall.Meanwhile,the oxygenation index decreased,the WBC and neutrophils counts in BALF increased,and the W/D of left lung was higher in the Group D with significant differences compared with the Group C.Moreover,the BALF levels of TNF-α,IL-1β and MIP-2,the lung levels of MDA increased,and the lung levels of SOD decreased significantly in the Group D compared with those in the Group C.There were no statistical significant differences between the Group B and Group A in all parameters except that MDA levels increased and SOD levels decreased significantly in the Group B.Conclusion Hyperoxia can increase lung injury induced in large tidal volume ventilation in rats,but has mininmal effects in conventional mechanical ventilation.
【Abstract】Objective To investigate the role of interleukin-10(IL-10) and interleukin-18 (IL-18) in the pathogenesis of acute lung injury in experimental severe acute pancreatitis.Methods Forty-eight SD rats were divided into control group and SAP group by the random data table. The model of experimental severe acute pancreatitis was established by injection of 3.5% sodium taurocholate into the bili-pancreatic duct. Lung wet weight index, ascities and level of serum amylase, IL-10 and IL-18 were quantitatively measured in different time. Intrapulmonary expressions of IL-10 mRNA and IL-18 mRNA were detected by semiquantitative RTPCR. The histopathology of pancreas and lung were observed under the light microscope.Results Lung wet weight index, ascities, level of serum amylase, IL-10 and IL-18, intrapulmonary expressions of IL-10 mRNA and IL-18 mRNA were significantly increased in SAP group (P<0.01). The level of serum IL-18 and intrapulmonary expression of IL-18mRNA are positively correlated with lung wet weight index (r=0.68,P<0.01; r=0.72,P<0.01) and lung injury score (r=0.74,P<0.01; r=0.79,P<0.01) respectively, whereas the level of serum IL-10 and intrapulmonary expression of IL-10 mRNA are negatively correlated with lung wet weight index(r=-0.62,P<0.01; r=-0.69,P<0.01) and lung injury score(r=-0.66,P<0.01; r=-0.60,P<0.01). Conclusion IL-18 may play a key role in the pathogenesis of acute lung injury in experimental severe acute pancreatitis, and IL-10 exerts the protection role in this process.
The contents of lipid peroxides(LPO)and vitamin E(V.E)and some functional index and histologic changes in the lungs from the the rabbit models of acute cholangitis of severe type(ACST)were measured dynamically.The results revealed that the V.E content decreased strikingly from 6 hours and the LPO level increased progressivelg from 12 hours in the lungs.Simultanuosly,the congestion and neutrophil infiltreation in the lung mesenchyme,and the endothelial cell damage and thrombosis in the lung blood capillaries had been observed.These suggest that acute lung injury induced by ACST is referable to the lipid peroxidation damage to the lung blood capillaries which is due to increased LPO and decreased antioxidants including V.E.
Objective To study the protective effects of ulinastatin( UTI) on lung function after cardiopulmonary bypass( CPB) . Methods 42 Patients, ASA score Ⅱ ~Ⅲ, scheduled for elective cardiac valve replacement, were randomly allocated into three groups, ie. a control group, a low dose UTI group( UTI 8000U/kg) , and a high dose UTI group( UTI 12 000 U/kg) . Inspiratory pressure( PIP) , Plateau pressure ( Pplat) , alveolar-arterial oxygen pressure difference ( AaDO2 ) , static lung compliance ( Cs) and dynamic lung compliance ( Cd) were recorded before operation ( T1 ) and at 1 hour ( T2 ) , 4 hours ( T3 ) , 24 hours ( T4 ) after CPB termination. Results Compared with pre-CPB, postoperative PIP, Pplat and AaDO2 increased, and Cs and Cd decreased significantly in the control group( all P lt; 0. 05) . Compared with the control group at T2 ~T3 , postoperative PIP, Pplat, AaDO2 were significantly lower( P lt;0. 05) , and Cs and Cd were significantly higher in the two UTI groups( P lt;0. 05) . Compared with the low dose UTI group at T2 ~T3 , the PIP, Pplat and AaDO2 were significantly reduced( P lt;0. 05) , and the Cs and Cd were significantly increased in the high dose UTI group( P lt; 0. 05) . Conclusion UTI can alleviate lung injury and improve lung function during valve replacement surgery with CPB in a dose dependent manner.
Objective To improve the knowledge of lung injury induced by rituximab. Methods Clinical data of 5 lymphoma patients with lung injury caused by rituximab chemotherapy were analyzed. Results Five patients received chemotherapy including rituximab, and had fever, cough and dyspnea after 3 to 5 chemotherapy cycles. Chest CT showed bilateral diffuse interstitial infiltrates. All 5 cases experienced hypoxemia or respiratory failure. Clinical symptoms were improved 3 to 5 days after the treatment of glucocorticoids, and pulmonary lesions were significantly alleviated 1 to 2 weeks after the treatment. According to the literature, the incidence rate of lung injury caused by rituximab was 0. 03% to 4. 9%, which has increased recently. Conclusions With the comprehensive application of rituximab, lung injury caused by this drug is not rare. The good prognosis depends on early diagnosis and treatment by further recognition of the side effect of rituximab.
Objective To explore the role of chronic ethanol ingestion in pulmonary fibrosis. Methods Twenty SD rats were randomly divided into a control group (n=10) and an ethanol group ( n=10) , and fed with quantitative non-ethanol and ethanol Lieber-DeCarli liquid diet every day respectively. All rats were sacrificed after 8 weeks. The morphological changes and collagen deposition of lung tissue were observed under light microscope by HE and Masson staining. Levels of glutathione (GSH) and hydroxyproline (HYP) in lung tissues were measured by colorimetric method. The content of connective tissue growth factor (CTGF) in lung tissue was detected by ELISA. Results Compared with the control group, varied degrees of alveolar and alveolar septal infiltration of inflammatory cells can be shown in the ethanol group, and also some alveolar wall damage or collapse.Masson staining showed that the ethanol group has more significant deposition of collagen fibers in alveolar interstitumthan the control group. The content of GSH in rat lung tissue reduced, but the contents of HYP and CTGF increased in the ethanol group compared with the control group [ GSH( mg/g) :0.08±0.04 vs. 0.22±0.14, HYP(mg/g) : 0.57±0.15 vs. 0.40 ± 0.09, CTGF(ng/mL) :306.57±46.86 vs. 134.02±79.82, Plt;0.05] . Conclusions Lieber-DeCarli ethanol liquid diet can establish a rat model of chronic ethanol ingestion. Lung injury and pulmonary fibrosis in rats can be induced by chronic ethanol ingestion. Ethanol may be one of the causes of the pulmonary fibrosis.
Objective To investigate the protective effects of endotoxin pretreatment on lung injury of rats with endotoxemia. Methods The rat model of acute endotoxemia was established by injecting lipopolysaccharide (LPS) intraperitoneally. Seventy-two male Wistar rats were randomly divided into three groups, ie. a saline control group (N, n=24) , a LPS-treated group (L, n=24) , and a LPS pretreated group ( P, n=24) . Each group was divided into 2 h, 4 h, 6 h, and 12 h subgroups. The rats in group P were firstly administered with introperitoneal injection of 0.25 mg/kg LPS. After 24 hours, they were subjected to the injection of 0.5 mg/kg LPS. The rats in group N and L received injection of equivalent amount of saline. After 72 hours, the rats in group L and P were challenged with intravenous injection of 10 mg/kg LPS, otherwise saline in group N. Six rats were killed at 2, 4, 6 and 12 hours respectively after injection of LPS in group L and P. The lungs were removed for detecting intercellular adhesion molecule-1 ( ICAM-1) , superoxide dismutase ( SOD) , and malondialdehyde (MDA) . Meanwhile the level of tumor necrosis factoralpha ( TNF-α) in serum was measured, and the pathological changes of lung were also examined. Results The contents of ICAM-1, MDA and TNF-α in the LPS-treated 4 h group were 75.07 ±0. 53, ( 3.93 ± 0.42) μmol/g, and (478.62 ±45.58) pg/mL respectively, significantly higher than those in the saline control group. The endotoxin pretreatment reduced the above indexes to 42.40 ±0.44, ( 2.89 ±0.49) μmol / g and ( 376.76 ±43.67) pg/mL respectively (Plt;0.05) . The content of SOD in the LPS-treated 4 h group was ( 6.26 ±0.31) U/mg, significantly lower than that in the saline control group. The endotoxin pretreatment increased SOD to ( 8.79 ±0.35) U/mg. Conclusion Endotoxin pretreatment can suppress the progress of lung injury in rats with endotoxemia and protect the lung tissue by down-regulating the inflammatory response and oxygen free radical production.