Objective To explore the effect of age and gene therapyon the differentiation of marrow mesenchymal stem cells (MSCs) of the rats. Methods MSCs from the young (1-month-old), adult (9-month-old), and the aged(24monthold) rats were expanded in culture and infected with adenovirus mediated human bone morphogenetic protein 2 gene (Ad-BMP-2). The expression of BMP-2 and osteoblastic markers such as alkaline phosphatase(ALP), collagen Ⅰ(Col Ⅰ), bone sialoprotein(BSP) and osteopontin(OPN) were assayed during the process of differentiation. Their abilities to induce ectopic bone formation in nude mice were also tested. Results There was no significant difference in the expression of BMP-2 among the 3 groups. ALP activity assay and semi-quantitative reverse transcription polymerase chain reaction(RT-PCR) demonstrated that there were no significant differences in the expression of osteoblastic markers ALP, Col-Ⅰ, OPN and BSP amongthe 3 groups. Histomorphometric analysis indicated that there were no significant differences in the volume of the newly formed ectopic bones in nude mice amongthe 3 groups. Conclusion MSCs obtained from the aged ratscan restore their osteogenic activity following human BMP-2 gene transduction, therefore provides an alternative to treating the aged bone disease.
Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
OBJECTIVE: To isolate and characterize mesenchymal stem cells (MSCs) derived from bone marrow of Banna minipig inbred line (BMI). METHODS: BMI-MSCs was isolated from bone marrow by density gradient centrifugation and cultured in DMEM (containing 15% bovine serum) at 37 degrees C with humidified 5% CO2. These cultured stem cells were characterized in clonal growth, expression of specific markers and capability of differentiation. RESULTS: Mesenchymal stem cells were proliferative and could be expanded rapidly in vitro. Clonal growth of these cells can be observed when small amount of cells was inoculated. These cells were SH2, SH3, SH4, SB10 and SB21 positive. And it was proved that these cells possess osteo-differentiation ability, up-regulated alkaline phosphatase expression and calcium secretion after osteosupplement was added into the media for several days. CONCLUSION: Mesenchymal stem cells derived from bone marrow of BMI possess the general characters of stem cell.
Objective To investigate the myogenic differentiation of mesenchymal stem cells (MSCs) after being transplanted into the local muscle tissues. Methods The serious muscleinjured model was established by the way of radiation injury, incising, and freezing injury in 36 mouses. Purified MSCs derived from bone marrow of male mouse and MSCs induced by5-azacytidine(5-Aza-CR) were transplanted into the local of normal muscle tissues and injured muscle tissues of femal mouse. The quantity of MSCs and the myogenic differentiation of implanted MSCs were detected by the method of double labeling, which included fluorescence in situ DNA hybridization (FISH) and immuno-histochemistry on the 1st, 3rd, 6th, 9th, 12th, and 15th day after transplantation. Results The quantity of implanted MSCs decreased as timepassed. MSCs’ differentiation into myoblasts and positive expression of desmin were observed on the 15th day in purified MSCs group and on the 6th day in induced MSCs groups. Conclusion MSCs could differentiate into myoblasts after being implanted into the local of muscle tissues. The differentiationoccurs earlier in the induced MSCs group than that in purified MSCs group.
Objective To study the vascularization of the compositeof bone morphogenetic protein 2 (BMP-2) gene transfected marrow mesenchymal stem cells (MSCs) and biodegradable scaffolds in repairing bone defect. Methods Adenovirus vector carrying BMP-2 (Ad-BMP-2) gene transfected MSCs and gene modified tissue engineered bone was constructed. The 1.5 cm radial defect models were made on 60 rabbits, which were evenly divided into 4 groups randomly(n=15, 30 sides). Different materials were used in 4 groups: Ad-BMP-2 transfected MSCs plus PLA/PCL (group A), AdLacz transfected MSCs plus PLA/PCL (group B), MSCs plus PLA/PCL (group C) and only PLA/PCL scaffolds (group D). The X-ray, capillary vessel ink infusion, histology, TEM, VEGF expression and microvacular density counting(MVD) were made 4, 8, and 12 weeks after operation. Results In group A after 4 weeks, foliated formed bones image was observed in the transplanted bones, new vessels grew into the bones, the pores of scaffolds were filled with cartilage callus, osteoblasts with active function grew around the microvessels, and VEGF expression and the number of microvessels were significantly superior to those of other groups, showing statistically significant difference (Plt;0.01); after 8 weeks, increasingly more new bones grew in the transplanted bones, microvessels distended and connected with each other, cartilage callus changed into trabecular bones; after 12 weeks, lamellar bone became successive, marrow cavity recanalized, microvessels showed orderly longitudinal arrangement. In groups B and C, the capability of bone formation was weak, the regeneration of blood vessels was slow, after 12 weeks, defects were mostly repaired, microvessels grew among the new trabecular bones. In group D, few new vessels were observed at each time, after 12 weeks, broken ends became hardened, the defectedarea was filled with fibrous tissue. Conclusion BMP-2 gene therapy, by -upregulating VEGF expression, indirectly induces vascularization ofgrafts,promotes the living of seed cells, and thus accelerates new bone formation.
Objective To investigate the results of human amniotic membrane(HAM) which are loaded with marrow mesenchymal stem cells(MSCs) and epidermis cells in treating fullthickness skin defect combined with radiation injury. Methods Eight minipigs were used in this study. Three round fullthickness wounds(Ф3.67cm), which combined with radiation injury, were created on the dorsum of each side close to the vertebral column in each animal. Among 48 wounds, 24 left side wounds were treated with HAM loaded with MSCs and epidermis cells as experimental group (group A), 16 right side wounds with simple HAM (HAM group, group B) and 8 right side wounds with oil gauze as control (group C). The granulation tissue, reepithelization and wound area were observed after 1,2 and 3 weeks. Immunohistochemistry was performed using vWF as a marker for blood vessels.Image analysis was employed to test new area of wound at different interval time and healing rate of wound.Results The healing time of group A was 6 to 7 days faster than that of group C and 5 to 6 days faster than that of group B. After 15-17 days of graft, there were significant differences in new area of wound and healing rate between group A and groups B,C(Plt;001). New epidermis fully covered whole wound surface in group A, and their granulation tissue, which contained a lot of vWF, fibroblasts, capillaries and collagen, grew well. Many inflammatory cells still were seen in groups B and C, and their contents of vWF, fibroblasts, capillaries and collagen in granulation tissue were smaller than that in group A.Conclusion The graft of HAM loaded with MSCs and epidermis cells played an effective role in promoting healing of wound combined radiation injury with high quality.
Objective To study the adhesion characteristic in vitrobetween porous biphasic calcium phosphate(BCP) nanocomposite and bone marrow mesenchymal stem cells (MSCs) that have been induced and proliferated. Methods MSCs obtained from SD ratbone marrow were in vitro induced and proliferated. After their osteoblastic phenotype were demonstrated, MSCs were seeded onto prepared porous BCP nanocomposite(experiment group)and common porous hydroxyapatite (control group). Their adhesion situation was analyzed by scanning electron microscope. The initial optimal cell seeding density was investigated between new pattern porous BCP nanocomposite and MSCs by MTT automated colormetric microassay method. Results The differentiation of MSCs to osteoblastic phenotype were demonstrated by the positive staining of mineralized node, alkaline phosphatase (ALP) and collagen typeⅠ, the most appropriate seeding density between them was 2×106/ml. The maximal number which MSCs could adhere to porous BCP nanocomposite was 1.28×107/cm3. Conclusion MSCs can differentiate to osteoblastic phenotype.The MSCs were well adhered to porous BCP nanocomposite.
Objective To study morphological and biological senescence changes induced by D-galactose in the cultured rat mesenchymal stem cells. Methods After 3rd generations cultured in the DMEM-F12, MSCs were changed into DMEMF12 medium containing 8 g/L D-galatose and cultured to the 6th generations as the inducement group. The comparison were the 6thgenerations which was cultured in the DMEM-F12 medium all along, and then indentified by surface wave. Using flow cytometer to check the comparisons cell cycle change after swing in with 8 g/L D-galatose within the 4 days. In the first 7daysto draw the growth curve to the two groups. Optical and electronic microscope were used to identify the influences of characteristic morphological of mesenchymal stem cells of the two groups, the influences of biological markers were identified by single cell gel electrophoresis and β-galactose dye. Results After treatment with D-galactose, the mesenchymal stem cells displayed morphological and biological changes in the cell senescence with the senescent characteristic morphological markers; 85% of the cells were X-gal dye masculine, and the singal cell gel electrophoresis showed DNA damnification. The flow cytometry showed that 90% of the cells stayed in G 0/G 1, but the cells in S and G 2/M almost disappeared.However, the cells in the control group had no such DNA damages. Conclusion D-galactose can induce senescence of the mesenchymal stem cells, and 8 g/L is the best concentration to do so. This study has provided a good model forthe research of the mesenchymal stem cells senescence.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
Abstract: Objective To investigate the messenger ribonucleic acid (mRNA) expression level of tissue-type plasminogen activator (t-PA) in endothelial cells derived from adult mesenchymal stem cells (MSCs) after fluid shear stress loading which is within the physiological range. Methods After culturing in vitro, bone marrow MSCs of SD rats were seeded on slides.When it come to 80% confluence,26 slides were exposed to 5dyn/cm2 fluid shear stress for 3h in a flow chamber, and then induced to endothelial cells. Among them,13 slides constituted group Ⅰ, and the rest 13 slides set up group Ⅱ, which would be cultured for 3-4d further and passaged in 1∶3. At the same time, control group was set up, which including the cells never exposed to fluid shear stress before the endothelial differentiation. Fluid shear stress were exerting to cells in a specially made flow chamber. The expression level of t-PA mRNA of all groups were measured by real-time fluorescent quantitation reverse transcriptionpolymerase chain reaction (RTPCR). Results After endothelial differentiation for 7 days, the SD rats bone marrow MSCs acquired typical endothelial cell appearance. The t-PA mRNA expression level of group Ⅰ and group Ⅱ have an obviously enhance compared with control group(P<0.05). The t-PA mRNA expression level of group Ⅱ step down a little (P>0.05), but it is still significantly higher than that of control group (P<0.05). Conclusion Fluid shear stress could provide a protective action on the endothelial cells induced from MSCs in vitro, and the effect maintains with the cells passages. This formulates a theoretical foundation to the therapeutics of atherosclerosis and selection of seed cells in vascular tissue engineering.