Objective To investigate the expression levels and significance of vascular endothel ial growth factor (VEGF) and microvessel density (MVD) in rabbit radius defects repaired with allogeneic and autogenic bone. Methods Forty adult New Zealand rabbits were chosen, and 10 mm bone defect model was created in the bilateral radii of 28 experimental rabbits. The other 12 rabbits provided allogeneic bone under the standard of American Association of Tissue Bank. In the left side, allogeneic bone were used to repair bone defect (experimental group), equal capacity autogenous il iac bone was used in the right side (control group). Animals were sacrificed at 2, 4, 8, and 12 weeks postoperatively. Immunohistochemical method was used to determine the expression of VEGF, CD34 protein and MVD counting. Bone histomorphometric parameters, including percent trabecular area (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were measured by von Kossa staining undecalcified sl ices. The relation was analyzed between VEGF and MVD, histomorphometric parameters. Results The positive signals of VEGF protein were detected in cytoplasm of vascular endothel ial cells, chondrocytes, osteoblasts, fibroblasts and osteoclasts. At 2 weeks, there was no significant difference in VEGF protein expression between experimental group and control group (P gt; 0.05); at 4 and 8 weeks, the expression of VEGF in control group was significantly higher than that in experimental group (P lt; 0.05); and at 12 weeks, there was no significant difference between two groups (P gt; 0.05). There was a positive correlation (P lt; 0.01) between VEGF expression and MVD value in two groups at 2, 4, 8, and 12 weeks postoperatively. There was no significant difference in bone histomorphometric parameters (BV/TV, Tb.Th, Tb.N, Tb.Sp) between two groups at 12 weeks postoperatively (P gt; 0.05), but there was a positive correlation between VEGF expression and parameters of BV/TV, Tb.Th, and Tb.N (P lt; 0.01); and a negative correlation between VEGF and Tb.Sp (P lt; 0.01). Conclusion VEGF can express diversity at different time and positions, and the different expressions indicated various biology significances in the process of the bone heal ing. It can coordinate growth of cartilage and bone and profit vascular reconstruction of allogeneic bone. VEGF may participate in promoting osteogenesis in the course of allogeneic bone transplantation.
ObjectiveTo discuss the feasibility of treating noumenon tumor by antiangiogenesis.MethodsRelated literatures of recent 5 years was reviewed.ResultsTumor angiogenesis were related closely with growth, development, metastasis and prognosis of noumenon tumor. It was possible to inhibit the growth and metastasis of noumenon tumor with antiangiogenesis in vitro and vivo.ConclusionAntiangiogenesis will be a new therapy of treating noumenon tumor.
Objective To investigate perfusion features of gastric antrum cancer by 64-multidetector CT and to assess the correlation between perfusion CT parameters and immunohistochemical markers of angiogenesis in gastric cancer. Methods Perfusion CT was performed in 30 patients with gastric antrum cancer (gastric antrum cancer group) and 24 patients with normal stomach (control group), and postoperative specimens were stained using a polyclonal antibody to VEGF and CD34. The correlation between perfusion parameters and microvessel density (MVD), and VEGF were analyzed. Results Blood volume (BV) increased in the gastric antrum cancer group (Plt;0.01). There was no significant difference in perfusion (PF), peak enhancement (PE), or time to peak (TTP) between the gastric antrum cancer and the normal groups (Pgt;0.05). BV was positively significantly correlated with MVD (r=0.522, P=0.02), but no significant correlation was found between PF (r=0.072, P=0.78), PE (r=0.253, P=0.31), or TTP (r=0.235, P=0.35) and MVD. No correlation was found between PF (r=-0.208, P=0.45), PE (r=-0.251, P=0.37), TTP(r=-0.284, P=0.31), or BV(r=-0.472, P=0.09) and VEGF.Conclusion Blood volume can evaluate the angiogenesis of tumor and perfusion CT can be a tool to assess microvessel status in gastric antrum cancer.
ObjectiveTo study the mechanism of reducing the intratumoral microvessel density (MVD) by Ginsenoside Rg3 (Rg3) combined with cytotoxic agent in xenotransplanted human breast infiltrating duct carcinoma in nude mice. MethodsSixteen female nude mice were randomly divided into 4 groups to receive cyclophosphamid (16 mg/kg,qd) combined with Rg3 (10 mg/kg, qd),Rg3(10 mg/kg,qd) alone,cyclophosphamid (16 mg/kg,qd) alone and 0.5% sodium carboxymethyl cellulose (0.5 ml,qd) respectively for 55 days. Breast cancer mass were weighed and sampled for light microscopic observation. The intratumor MVD was examined by immunohistochemical staining. ResultsThe tumor weight of treated group was significantly lower than that of control group. The tumor weight of the Rg3 combined with CTX group was lower than that of Rg3 group. The MVD value of Rg3 group was significantly lower than that of CTX group and control group. The MVD was significantly reduced in the Rg3 combined with CTX group than that in the others.ConclusionRg3 combined with CTX can inhibit the growth of xenotransplanted human breast infiltrating duct carcinoma, and reduce the intratumoral MVD.
Objective To detect the expression of thromhospondin-1 (TSP-1) in gastric cancer and metastaticlymph node tissues, and to study its relationship of TSP-1 to clinicopathologic parameters or tumor angiogenesis. Methods The TSP-1 and vascular endothelial growth factor (VEGF) expressions and microvessel density (MVD) were evaluated by immunohistochemistry in 72 specimens obtained by gastric resection from patients with gastric cancer, including corres-ponding adjacent normal gastric mucosa tissues (distant from cancer ≥5 cm) and lymph nodes surrounding cancer. A semiquantitative scoring system was used for evaluating the staining. The relationship of TSP-1 to VEGF expression, MVD, or clinicopathologic parameters was analyzed. Results ① TSP-1 positive expression rate was 45.8% (33/72) in the primary gastric cancer tissues, 90.3% (65/72) in the corresponding adjacent normal gastric mucosa tissues, and 50.8% (30/59) in the metastatic lymph nodes tissues. The expressions of TSP-1 in the primary gastric cancer tissues and metastatic lymph nodes tissues were significantly lower than those in the adjacent normal gastric mucosa tissues (χ2=32.710,P=0.000;χ2=25.298, P=0.000). The expression of TSP-1 had no statistical significance in the primary gastric cancer tissues as compared with in the metastatic lymph nodes tissues (χ2=0.327, P=0.568). ② The expression of TSP-1 in the metastatic lymph nodes tissues was significantly lower than that in the non-metastatic lymph nodes tissues (Z=-2.573, P=0.010). ③The expression of TSP-1 in the primary gastric cancer tissues and metastatic lymph nodes tissues suggested a negative correlation with VEGF (rs=-0.309, P=0.008;rs=-0.269, P=0.040) and MVD (rs=-0.348, P=0.003;rs=-0.272, P=0.037). Conclusions TSP-1 expression is down-regulated and has a negative correlation with VEGF and MVD in the primary gastric cancer and the metastatic lymph nodes tissues. According to the present results, it seems likely that TSP-1 is a tumor angiogenesis inhibitor.
ObjectiveTo detect the expressions of microvessel density (MVD)-CD34 and vascular endothelial growth factor (VEGF) in hepatic alveolar hydatid tissue in gerbil model and explore their clinical significances. MethodsSixty health gerbils were randomly equally divided into two groups, an experimental group and a sham operation group, each gerbil was given liver vaccination by opening their abdominal. Each gerbil in the experimental group was injected with approximately 400 echinococcus protoscoleces (0.1 mL), and each gerbil in the sham operation group received a corresponding volume of physiological saline. Six gerbils were sacrificed on day 20, 40, 60, 80, and 100. The hepatic alveolar hydatid tissue (AE) and its surrounding liver tissue (HSAE) were collected from the experimental group and the normal liver tissue (NL) was collected from the sham operation group, and the expressions of MVD-CD34 and VEGF were detected by immunohistochemistry staining (EnVision method). ResultsEchioncoccus multilocularis hydatid tissues were observed over the liver and in the partly abdominal cavity in the experimental group each gerbil by general observation. The expressions of CD34 and VEGF were observed in the AE at each time point after infection and located in the cytoplasmic of endothelial cells. The number of MVD-CD34 of AE at each time point in the AE was (9.83±3.87)/HP, (25.33±6.71)/HP, (34.50±5.50)/HP, (37.67±5.71)/HP and (44.67±4.93)/HP, respectively, which were significantly higher than those in the HSAE〔0/HP, (1.17±0.98)/HP, (3.50±1.38)/HP, (5.83±2.71)/HP, and(8.83±2.48)/HP, respectively〕and NL (all were 0), P < 0.05. The point of VEGF at each time point in the AE was 2.95±0.46, 3.90±0.68, 4.27±1.05, 5.33±0.95, and 4.50±0.81 respectively, which were significantly higher than those in the HSAE(1.07±0.63, 1.38±0.75, 1.55±0.83, 1.67±0.47, 2.10±0.55, respectively) and NL (1.02±0.83, 1.12±0.63, 1.26±0.26, 1.20±0.74, 1.21±0.28), P < 0.05. ConclusionAngiogenesis might be involved in infiltrated growth of alveococcus, and VEGF might contribute to angiogenesis of alveolar hydatid tissue.
Objective To investigate the effects of sustained-release basic fibroblast growth factor (bFGF) on healing of bile duct defect. Methods A model of bile duct wall defect (2 cm in length and 1/3-2/3 of the bile duct circumference in width) was made in 24 pigs (male or female, weighing 15-30 kg), and then defect was repaired with sustained-release bFGF collagen membrane (2.0 cm × 1.0 cm × 0.5 cm in size) in the experimental group (n=12) or with collagen membrane (2.0 cm × 1.0 cm × 0.5 cm in size) alone in the blank control group (n=12). Another 4 healthy pigs were used to obtain normal bile duct as normal control group. The survival condition of pigs was observed after operation; at 1, 2, and 3 months after operation, the blood sampling was collected to test the changes of liver function, and the bile duct specimens were harvested to count the microvessel density (MVD) and submucosal gland by HE staining and immunohistochemistry staining; and at 3 months after operation, cholangiography examination was done. Results All the animals survived to completion of the experiment. Intra-abdominal adhesion was serious in the experimental and blank control groups at 1 week after operation, but the adhesion was markedly improved in the experimental group when compared with the blank control group with time passing. The liver function test showed that alkaline phosphatase in the experimental group was significantly lower than that in the blank control group at 2 and 3 months (P lt; 0.05), but no significant difference in aspartate aminortransferase, total bilirubin, and albumin was found among 3 groups (P gt; 0.05). The histology and immunohistochemistry staining observations showed that the regeneration rates of submucosal glands and epithelium in the experimental group were faster than those in the blank control group; defect was covered with the epithelium at 2 months, and the structure was similar to that of normal control group at 3 months; and the edema and inflammation infiltration were reduced when compared with the blank control group. The counts of MVD and submucosal gland were significantly higher than those in blank control group and normal control group at 1 month after operation (P lt; 0.05), and then decreased and remained at normal levels at 2 months after operation. There was a positive correlation between submucosal gland counting and MVD counting in 3 groups after operation (P lt; 0.01). The cholangiography examination showed no biliary dilatation or cholelithiasis after 3 months in experimental group and blank control group. Conclusion Sustained-release bFGF can promote healing of bile duct defect by accelerating the vascularization, gland regeneration, and epithelialization.
Objective To explore the effect of toremifene on estrogen receptor (ER) expression and tumor micro-angiogenesis in rat Lewis lung carcinoma. Methods Cell suspension of rat Lewis lung carcinoma was implanted into 40 female Wistar rats subcutaneously. The rats were randomly divided into a control group,a estradiol group (0.006 mg/mL),a low dose toremifene group (0.25 mg/mL) and a high dose toremifene group (5 mg/mL). Tumor size was measured every 3 days and the tumor growth curve was charted. On 15th day,the tumor weight and the growth inhibition rate were measured. Immunohistochemical method was used to detect the expressions of estrogen receptor α (ERα),estrogen receptor β (ERβ),vascular endothelial growth factor (VEGF),and platelet endothelial cell adhesion molecule-1 (PECAM-1). Integral optical density (IOD) of ERα,ERβ and VEGF was calculated by image analysis software. Quantitative method of Weidner with PECAM-1 was employed for microvessel density (MVD) count. Results Tumor size of the four groups all presented a quadratic function growth trend with time (Plt;0.05). Tumor growth speed was slower in toremifene groups of low and high doses than that in the control group and the estradiol group. The growth inhibition rate of the estradiol group,the low dose toremifene group and the high dose toremifene group was -15.1%,22.6%,and 45.1%,respectively. The expressions of ERα,VEGF,and MVD in the estradiol group were significantly higher than those in the control group,the low dose toremifene group and the high dose toremifene group (all Plt;0.05). The expressions of ERα,VEGF,and MVD in the low dose toremifene group were significantly lower than those in control group,but higher than those in high dose toremifene group (all Plt;0.05).The expression of ERα was positively related to VEGF (r=0.664,Plt;0.05) and MVD(r=0.593,Plt;0.05). Conclusion Toremifene can inhibit tumor growth,which maybe involved in inhibiting ERα mediated VEGF expression.
ObjectiveTo observe the vascularity in periprosthetic tissues of aseptic loosening after total hip arthroplasty (THA) and to explore the relationship between expression of vascularity and osteolysis. MethodsBetween October 2009 and June 2012, interface tissues were obtained from 22 patients (22 hips) who underwent revision of THA because of prosthetic aseptic loosening, including 12 males and 10 females with the age range of 53-81 years and prosthesis survival range of 6-14 years. The interface tissues were divided into osteolysis group and non-osteolysis group based on preoperative X-ray findings and intraoperative observation. The synovial tissues were harvested from another 8 patients (3 males and 5 females, aged 58-72 years) with osteoarthritis undergoing THA as control group. HE stainging was used to observe the histological character, and low-wear or high-wear was identified according to metal or polyethylene particles amount in osteolysis group. The CD34 immunohistochemical staining was used to mark the blood vessels. Microvessel density and microvessel index were calculated with the use of image analysis software. ResultsHistological observation showed that wear particles and numerous macrophages/multinucleated giant cells accumulated in the membrane of osteolysis group, while many fibroblasts and synovial cells existed in non-osteolysis group. The microvessels density and microvessel index were significantly lower in non-osteolysis group than those in osteolysis group and control group (P<0.05), and there was no significant difference in microvessel density and microvessel index between osteolysis group and control group (P>0.05). There were less microvessel density and microvessel index in heavy-loaded metal or polyethylene wear particles areas than those in low-loaded metal or polyethylene wear particles areas (P<0.05), and there was no significant difference in microvessel index and microvessel index between low-wear group and high-wear group for either polyethylene or metal particles (P>0.05). ConclusionThe phagocytosis of macrophage in periprosthetic tissues need vicinal microvessels formation and blood supply to some extent. Vascular injury and decreased blood supply at the implant-bone interface seem to be one of the reasons for insufficient implant osseointegration and aseptic loosening.
ObjectiveTo investigate the expression of keratinocyte growth factor (KGF) and cyclooxygen-ase-2 (COX-2) protein and microvessel density (MVD), and to explore their function and mechanism in the multistep process of gastric cancer. MethodsThe expressions of KGF and COX-2 protein in 64 samples of gastric cancer and 30 cases of normal gastric mucosa tissues were detected by immunohistochemistry. The MVD was detected by staining the endothelial cells in microvessles using anti-CD34 antibody. ResultsThe positive rate of KGF and COX-2 protein expression in gastric cancer were 65.6% (42/64) and 79.7% (51/64), respectively, which was significantly higher than that in normal gastric mucosa tissues 〔(23.3%, 7/30), P=0.046; (13.3%, 4/30), P=0.008〕. The MVD of gastric cancer was 31.8±8.0, which was significantly higher than that of normal gastric mucosa tissues (14.3±6.1), P=0.000. The MVD in gastric cancer with coexpressive KGF and COX-2 protein was 35.9±5.7, which was significant higher than that with non-coexpressive KGF and COX-2 protein (25.7±7.0), P=0.000. Both the expression of KGF and COX-2 protein were related to the invasion of serosa, lymph node metastasis and TNM staging (Plt;0.05, Plt;0.01). The MVD of gastric cancer tissues was related to lymph node metastasis and TNM staging (Plt;0.05), but unrelated to patient’s age, gender, and differentiation of tumor (Pgt;0.05). The co-expression of KGF and COX-2 protein was frequently found in patients with deeper invasion of serosa, lymph node metastasis, and higher TNM staging (Plt;0.05), but which was not associated withpatient’sage, gender, and differentiation of tumor (Pgt;0.05). The expression of KGF protein was positively correlated to the expression of COX-2 protein (r=0.610, P=0.000). There was positive correlation between MVD and the expression of KGF (r=0.675, P=0.000) and COX-2 protein (r=0.657, P=0.000) in gastric cancer, respectively. ConclusionKGF and COX-2 highly expressed by gastric cancer, which may be involved in the invasion and metastasis of gastric cancer by synergisticly promoting the angiogenesis.