west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Multi-scale convolution" 3 results
  • Automated detection of sleep-arousal using multi-scale convolution and self-attention mechanism

    In clinical, manually scoring by technician is the major method for sleep arousal detection. This method is time-consuming and subjective. This study aimed to achieve an end-to-end sleep-arousal events detection by constructing a convolutional neural network based on multi-scale convolutional layers and self-attention mechanism, and using 1 min single-channel electroencephalogram (EEG) signals as its input. Compared with the performance of the baseline model, the results of the proposed method showed that the mean area under the precision-recall curve and area under the receiver operating characteristic were both improved by 7%. Furthermore, we also compared the effects of single modality and multi-modality on the performance of the proposed model. The results revealed the power of single-channel EEG signals in automatic sleep arousal detection. However, the simple combination of multi-modality signals may be counterproductive to the improvement of model performance. Finally, we also explored the scalability of the proposed model and transferred the model into the automated sleep staging task in the same dataset. The average accuracy of 73% also suggested the power of the proposed method in task transferring. This study provides a potential solution for the development of portable sleep monitoring and paves a way for the automatic sleep data analysis using the transfer learning method.

    Release date: Export PDF Favorites Scan
  • Detection model of atrial fibrillation based on multi-branch and multi-scale convolutional networks

    Atrial fibrillation (AF) is a life-threatening heart condition, and its early detection and treatment have garnered significant attention from physicians in recent years. Traditional methods of detecting AF heavily rely on doctor’s diagnosis based on electrocardiograms (ECGs), but prolonged analysis of ECG signals is very time-consuming. This paper designs an AF detection model based on the Inception module, constructing multi-branch detection channels to process raw ECG signals, gradient signals, and frequency signals during AF. The model efficiently extracted QRS complex and RR interval features using gradient signals, extracted P-wave and f-wave features using frequency signals, and used raw signals to supplement missing information. The multi-scale convolutional kernels in the Inception module provided various receptive fields and performed comprehensive analysis of the multi-branch results, enabling early AF detection. Compared to current machine learning algorithms that use only RR interval and heart rate variability features, the proposed algorithm additionally employed frequency features, making fuller use of the information within the signals. For deep learning methods using raw and frequency signals, this paper introduced an enhanced method for the QRS complex, allowing the network to extract features more effectively. By using a multi-branch input mode, the model comprehensively considered irregular RR intervals and P-wave and f-wave features in AF. Testing on the MIT-BIH AF database showed that the inter-patient detection accuracy was 96.89%, sensitivity was 97.72%, and specificity was 95.88%. The proposed model demonstrates excellent performance and can achieve automatic AF detection.

    Release date: Export PDF Favorites Scan
  • Research on multi-scale convolutional neural network hand muscle strength prediction model improved based on convolutional attention module

    In order to realize the quantitative assessment of muscle strength in hand function rehabilitation and then formulate scientific and effective rehabilitation training strategies, this paper constructs a multi-scale convolutional neural network (MSCNN) - convolutional block attention module (CBAM) - bidirectional long short-term memory network (BiLSTM) muscle strength prediction model to fully explore the spatial and temporal features of the data and simultaneously suppress useless features, and finally achieve the improvement of the accuracy of the muscle strength prediction model. To verify the effectiveness of the model proposed in this paper, the model in this paper is compared with traditional models such as support vector machine (SVM), random forest (RF), convolutional neural network (CNN), CNN - squeeze excitation network (SENet), MSCNN-CBAM and MSCNN-BiLSTM, and the effect of muscle strength prediction by each model is investigated when the hand force application changes from 40% of the maximum voluntary contraction force (MVC) to 60% of the MVC. The research results show that as the hand force application increases, the effect of the muscle strength prediction model becomes worse. Then the ablation experiment is used to analyze the influence degree of each module on the muscle strength prediction result, and it is found that the CBAM module plays a key role in the model. Therefore, by using the model in this article, the accuracy of muscle strength prediction can be effectively improved, and the characteristics and laws of hand muscle activities can be deeply understood, providing assistance for further exploring the mechanism of hand functions.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content