Objective To study the construction feasibility of a biodegradable artificial esophagus by the squamous epithelial cells and the myoblast cells seeded on the small intestinal submucosa(SIS) and to investigate the growth patternand angiogenesis of the co-cultured human embryonic squamous epithelial cells and the skeletal myoblasts in vivo. Methods The squamous epithelial cells and the myoblast cells were obtained from the 20-week aborted fetus. Both of their cellswere marked by 5-BrdU in vitro.The isolated cells were then seeded on the SIS and co-cultured in vitro for 24 hours, and then the compound of the cells and the SIS was transplanted into the subcutaneous tissue of the athymismus mice. The observation on the morphology and the cytokeratin AE3 and α-actin specified immunohistochemistry of the squamous epithelial cells and the myoblastcells was performed at each of the following time points: 3 days, 1 week, 2 weeks, and 3 weeks after transplantation. Results The morphological observation indicated that the cultured cells could penetrate into the small intestinal submucosa and form several-layered cell structures, and that the compound of the cells and the SIS could have angiogenesis within 2-3 weeks. The 5-BrdU specified immunohistochemical observation suggested that the cells growing in the small intestinal submucosa scaffold might be the cells transplanted.The cytokeratin AE3 specified and α-actin specified immunohistochemical studies demonstrated that the transplanted cells could differentiate in vivo. Conclusion It is possible to fabricate the framework of a biodegradable artificial esophagus with the epithelial cells and the myoblast cells seeded on the small intestinal submucosa.
Objective To explore the possibilityof constructing tissue engineering muscles by combining allogeneic myoblasts with small instestinal submucosa(SIS) in rabbits.Methods A large number of purified myoblasts were obtained with multiprocedure digestion and repeated attachment method from skeletal muscles taken from extremities of immature rabbits which were born 7 days ago. The myoblasts were labeled with BrdU, and then combined with SIS to construct tissue engineering muscles. This kind of tissue engineering muscles were grafted into the gastrocnemius muscle defect (1.5 cm in length, 1.0 cmin width) of fifteen rabbits as the experimental group. The SIS was grafted into the same position in the control group. The rabbits were sacrificed 4, 6, 8 weeks after operation. The tissue engineering muscles were evaluated by macroscopic、histological and immunohistochemical observations, and by quantitative analysis of local immunocyte in the grafting site. Results Allogeneic myoblasts with SIS were combined perfectly in vitro. The SIS was connected tightly to surrounding skeletal muscles and inflammation response was obvious 4 weeks after grafting.The SIS began to break down and inflammation response became slight 6 and 8 weeks after operation. Compared with that of 8th week, the quantitative analysis oflocal immunocyte in 4th and 6th week in both experimental and control group hassignificance(Plt;0.05). Newly formed muscle tissues were found around SIS in the experimental group in 4th, 6th, and 8th week. Expression of BrdU and myosin immunohistochemical staining were positive in the experimental group and negative inthe control group.Conclusion Tissue engineering muscles of rabbits which are constructed by combining allogeneic myoblasts with SIS can survive and proliferate.
Objective To investigate the myogenic differentiation of mesenchymal stem cells (MSCs) after being transplanted into the local muscle tissues. Methods The serious muscleinjured model was established by the way of radiation injury, incising, and freezing injury in 36 mouses. Purified MSCs derived from bone marrow of male mouse and MSCs induced by5-azacytidine(5-Aza-CR) were transplanted into the local of normal muscle tissues and injured muscle tissues of femal mouse. The quantity of MSCs and the myogenic differentiation of implanted MSCs were detected by the method of double labeling, which included fluorescence in situ DNA hybridization (FISH) and immuno-histochemistry on the 1st, 3rd, 6th, 9th, 12th, and 15th day after transplantation. Results The quantity of implanted MSCs decreased as timepassed. MSCs’ differentiation into myoblasts and positive expression of desmin were observed on the 15th day in purified MSCs group and on the 6th day in induced MSCs groups. Conclusion MSCs could differentiate into myoblasts after being implanted into the local of muscle tissues. The differentiationoccurs earlier in the induced MSCs group than that in purified MSCs group.
【Abstract】 Objective To investigate the role of myosin l ight chain (Myl) in myogenesis in vitro. Methods The extraocular muscle, diaphragm and gastrocnemius muscle myoblasts (eMb, dMb and gMb) were isolated and purified from 12 3-week-old C57BL/6 mice by using the enzyme digestion and Preplate technique, and then were subcultivated. The Myl expression in Mb was detected by RT-PCR and Western blot analysis; the Mb prol iferation activity was tested by methylene blue assay, and the myotube formation was observed. After anti-Myl antibody (1, 2, 3, 8, 16 ng/mL) was induced in the Mb culture (experimental group), the abil ity of prol iferation of myoblasts and the myotube formation were identified. Meanwhile, the Mb which was cultured without anti-Myl antibody was indentified as the control group. Results The results of RT-PCR and Western blot analysis showed that Myl1 and Myl4 mRNA and Myl protein were expressed in eMb, dMb and gMb at 24 hours after seeding, and their expression level were lower in eMb than in dMb and gMb (P lt; 0.01), and the latter two did not show any significant difference (P gt; 0.05). Myl2 and Myl3 mRNA was not detected in these three myoblasts. The prol iferation assay showed that the eMb prol iferated faster as compared with dMb and gMb (P lt; 0.01). eMb began to yield myotubes at 40 hours after seeding and dMb and gMb at 16 hours after seeding. At 6 days, the number of myotubes derived from eMb was (137.2 ± 24.5)/ field, which was significantly larger than that of myotubes from dMb [(47.6 ± 15.5) / field ] and gMb [(39.8 ± 5.1) field ] (P lt; 0.01). There was not statistically significant difference between the latter two groups (P gt; 0.05). After the antibody treatment, the absorbency values of the eMb, dMb and gMb in the experimental groups at each antibody concentration point were significantly higher than those in the corresponding control groups (P lt; 0.05), and the dose-dependent way was performed.The numbers of myotubes from dMb at 16 hours were (48.2 ± 7.1)/ well in the experimental group and (23.4 ± 4.9)/ well in the control group, and at 6 days were (40.6 ± 10.2)/ field in the experimental group and (63.1 ± 6.1)/ field in the control group.There was statistically significant difference between the experimental and control groups (P lt; 0.01). Conclusion Myl may play a role in myogenesis through the negative effect on the myoblast prol iferation.
ObjectiveTo research the effect of chondroitin sulfate (CS) on the proliferation of myoblasts and the formation of myotube. MethodsThe myoblasts at passage 5 were used to prepare the cells suspension (1×108 cells/mL), and the experiment was divided into 4 groups based on CS concentration in the medium:group A (0 μg/mL), group B (50 μg/mL), group C (100 μg/mL), and group D (200 μg/mL). The cell morphology and myotube formation were observed by inverted microscope at 4, 5, and 8 days after treatment; MTT was used to detect the cell proliferation at 6 days, and the number of myotube was calculated by HE staining at 8 days. ResultsCells showed spindle shape after adherent, with ovoid nuclei and dense cytoplasm under inverted microscope. When the cell adherent rate was 90%, cells arranged in whorls swirled and showed long fusiform adherent growth; and then nuclei fusion resulted in formation of multincleated myotubes. At 8 days, most myoblasts fused to form myotube in group A, but less myotube was observed in groups B and C, and the least myotube in group D. The absorbance (A) values of groups A, B, C, and D were 0.045 2±0.004 4, 0.540 4±0.096 7, 0.660 9±0.143 4, and 1.069 0±0.039 0 respectively, showing significant difference between other groups (P<0.05) except between groups B and C P>0.05). HE staining observation showed that most myoblasts fused to form myotube in group A, but less myotube in groups B and C, and the least myotube in group D. The number of myotube of groups A, B, C, and D were 222.01±30.02, 193.13±42.46, 170.26±11.96, and 136.88±16.78 respectively, showing no significant difference among groups (F=1.658, P=0.252). ConclusionCS can significantly promote the proliferation of myoblast, the promotion is the biggest when CS concentration is 200 μg/mL.
OBJECTIVE: To investigate the biological characteristics of continuously subcultured human embryonic skeletal myoblasts, and choose the optimal seeding cells for muscle tissue engineering. METHODS: Human embryonic skeletal myoblasts were subcultured in vitro. The growth curve, rate of myotube formation(RMF) were used to evaluate the proliferative and differentiation ability of myoblasts, and to investigate the influence of fibroblasts contamination on myoblasts. RESULTS: The beginning 6 passages of myoblasts showed b proliferative and differentiation ability. From the 8th to 20th passage, the rate of fibroblasts contamination was increased, it mainly showed the growth characteristics of fibroblasts with increased proliferation and low differentiation. After subcultured to the 20th passage, the degeneration of myoblasts was obvious. CONCLUSION: The myoblasts within 6 passages should be used as the seeding cells of muscle tissue engineering because of b proliferative ability and high rate of myotube formation.
【Abstract】 Objective To construct tissue engineered skeletal muscle in vivo using glial cell derived neurotrophic factor (GDNF) genetically modified myoblast (Mb) on acellular collagen sponge with hypoglossal nerve implantation, and to observe whether structural or functional connection could be established between engineered tissue and motor nerve or not. Methods Mbs were isolated from 7 male Lewis rats at age of 2 days, cultured and genetically modified by recombinant adenovirus carrying GDNF cDNA (MbGDNF). Calf skin-derived acellular collagen sponge was used as scaffold; cell adhesion was detected by scanning electron microscope after 24 hours. Hypoglossal nerve was implanted into Mb-scaffold complex (Mb group, n=27) or MbGDNF-scaffold complex (MbGDNF group, n=27) in 54 female Lewis rats at age of 8 weeks. HE staining was performed at 1, 6, and 12 weeks postoperatively, and immunohistochemistry staining and fluorescence in situ hybridization were used. Results MbGDNF could highly expressed GDNF gene. Mb and MbGDNF could adhere to the scaffold and grew well. HE staining showed tight junctions between implant and peripheral tissue with new muscle fiber and no distinguished line at 12 weeks in 2 groups. Immunohistochemistry staining showed that positive cells of myogenin and slow skeletal myosin were detected, as well as positive cells of actylcholine receptor α1 at 1, 6, and 12 weeks. The positive cells of Y chromosome decreased with time. At 1, 6, and 12 weeks, the positive neurons were 261.0 ± 6.6, 227.3 ± 8.5, and 173.3 ± 9.1, respectively in MbGDNF group, and were 234.7 ± 5.5, 196.0 ± 13.5, and 166.7 ± 11.7, respectively in Mb group; significant differences were found between 2 groups at 1 and 6 weeks (P lt; 0.05), no significant difference at 12 weeks (P gt; 0.05). Conclusion Connection can be established between engineered tissue and implanted hypoglossal nerve. Recombinant GDNF produced by MbGDNF might play a critical role in protecting central motor neurons from apoptosis by means of retrograde transportation.
Objective To explore the effects of mechanical stimulation on the expression of autoantigens in myoblasts. Methods According to different processing methods, C2C12 cells were divided into the experimental group and control group; the experimental group was divided into 4 subgroups: 2-, 4-, and 6-day and 1-day stretch groups. In 2-, 4-, and 6-day stretch groups, mechanical loading was added on the C2C12 cells at a stretching frequency of 0.25 Hz and cellular deformation amplitude of 10%, 2 hours a day for 2, 4, and 6 days respectively by Flexercell 5000 strain unit, and at a stretching frequency of 1 Hz and cellular deformation amplitude of 15% for 1 hour in 1-day stretch group. In the control group, the cells were routinely cultured for 1, 2, 4, and 6 days (1-, 2-, 4-, and 6-day control). The cells were observed by inverted phase contrast microscope. The cell proliferation was detected by flow cytometry; the expressions of autoantigens were detected by Western blot method, including the Ku/the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), U1-70 (A part of ATP-dependent DNA helicase II), histidyl tRNA synthetase (HRS), and Mi-2 (reconfigurable components deacetylase complexes of NuRD). Results The exfoliated cells were found in 1-day stretch group, but no exfoliated cell was seen in the control group for 1-day culture. The cells proliferated more obviously in 2-day stretch group than in the control group for 2-day culture; cell differentiation was found in 4-day stretch group, and cell fusion in 6-day stretch group, which were similar to those in the control group for 4- and 6-day culture. After single stretching, cell apoptosis was found in 1-day stretch group, showing no significant difference in the relative DNA proliferation index (DPI) when compared with DPI of control group for 1-day culture (t=0.346, P=0.747). After cyclic stretching, DPIs of 2- and 4- day stretch groups were significantly increased when compared with those of the control group for 2- and 4-day culture (P lt; 0.05), but no significant difference was found between control group for 6-day culture and 6-day stretch group (t=1.191, P=0.303). Compared with the control group for 2-day culture, the relative protein expression of autoantigens (DNA-Pkcs, Mi-2, HRS, and U1-70) in 2-day stretch group decreased significantly (P lt; 0.05), but no significant difference was found between control group for 4-day culture and 4-day stretch group (P gt; 0.05). The relative protein expressions of autoantigens in 4-day stretch group significantly increased when compared with those of 2-day stretch group (P lt; 0.05), but the relative protein expressions of autoantigens in the control group for 4-day culture significantly decreased when compared with those of the control group for 2-day culture (P lt; 0.05). Conclusion Short-term mechanical stimulation can inhibit the expressions of autoantigens in myoblasts, but with the time prolonging, cell differentiation and fusion and adaptation to mechanical stimulation would result in diminished inhibitory effect.
Objective To study the effect of allogenic different cells injected into denervated muscles on nerve regeneration. Methods Thirty-six adult female SD rats, weighed 120-150 g, were divided into four groups randomly (n=9, each group). Left sciatic nerves were cut down on germfree conditions and given primary suture of epineurium. Different cells were injected into the muscles of calf at once after operation every seven days and in all four times (group A: 1 ml Schwann cells at concentration of 1×106/ml; group B: 1 ml mixed cells of Schwann cells and myoblast cells at concentration of 1×106/ml; group C: 1 ml extract from the culture medium of kidney endothelial cells; and group D: 1 ml culture medium without FCS as control ). After 3 months, the specimen was observed on macrobody and histology, and the densities of neurilemma cell and myoceptor were counted. Results The means of proximate neurilemma cells were 0.187 7±0.054 2 in group A, 0.155 1±0.032 1 in group B, 0.072 4±0.023 7 in group C, and 0.187 7±0.054 2 in group D. The densities of myoceptor were 6.000±0.866 in group A,9.000±2.291 in group B,12.780±1.394 in group C, 3.110±0.782 in group D. Conclusion Schwann cells, mixed cells of Schwann cells with myoblast cells, and the extract from kidney endothelial cells canall accelerate the nerve regeneration. And the effect of extract from the kidney endothelial cell is superior to that of Schwann cell and mixed cell.
【Abstract】 Objective To investigate the effect of IGF-1 on the growth of primary human embryonicmyoblasts. Methods The method of incorporation of 3H-TdR was used to evaluate the abil ity of prol iferation of myoblasts.The count per minute (CPM) values of myoblasts at different concentrations(1, 2, 4, 8, 16 and 32 ng/mL) of IGF-1 were measured,and dose-effect curves were drawn to choose the optional concentration of IGF-1 to promote the prol iferation. Then theexperimental group of myoblasts received the addition of the optional concentration of IGF-1 in the growth medium, the controlgroup just received the growth medium. The flow cytometry was used to detect the cell cycle . The method of incorporation of3H-TdR was used to measure the peak-CPM. The myotube fusion rate was measured in myoblasts with different concentrations(0, 5,10, 15, 20, 25 and 30 ng/ mL) of IGF-1 in fusion medium, the dose-effect curves were also drawn, so as to decided the optional concentrationof IGF-1 in stimulating differentiation. Fusion medium with optional concentration of IGF-1 was used in experimentalgroup, and the control group just with fusion medium. The fusion rate of myotube and the synthesis of creatine kinase(CK) weredetected in both groups. Results The optional concentration of 5 ng/mL IGF-1 was chosen for stimulating prol iferation . It was shown that the time of cell cycle of control was 96 hours, but that of the experimental group was reduced to 60 hours. The results of flow cytometry showed that the time of G1 phase, S phase and G2M phase was 70.03, 25.01 and 0.96 hoursrespectively in control group, and were 22.66, 16.47 and 20.87 hours respectively in experimental group. The time-CPM value curves showed that the peak-CPM emerged at 96 hours in control group and 48 hours in experimental group, which was in agreementwith the results of the flow cytometry. The optional concentration stimulating prol iferation was 20 ng/mL IGF-1. Compared with control, the quantity of CK was increased by 2 000 mU/mL and the fusion rate was elevated by 30% in experimental group. Conclusion The concentrations of 20 ng/mL IGF-1 can elevat obviously the fusion rate and the quantity of CK. IGF-1 can enhance the prol iferation and differentiation of myoblasts via inducing the number of myoblasts at G1 phase and increasing the number of myoblasts at S and G2M phases.