Objective To establish a better method of isolating andculturing ofneural stem cells(NSCs) in neonatal rat brain. Methods Tissue of brain was isolated from neonatal rats. Different medium and culture concentration were used toculture NSCs of neonatal rat. The culture concentration used were 1×10 4, 1×105, 1×106and 1×107/ml respectively. Ingredient of medium was classified into group 1 to 8 respectively according to whether to add 2% B27, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) as well as the difference in culture concentration. The cells were induced to differentiate asto be confirmed as NSCs, and then were checked by phase contrast microscopy and identified by immunocytochemistry. Results The cells isolated and cultured gathered into neurospheres. The cells were capable of proliferating and maintaining longterm survival in vitro. The cells could be differentiated into neurons and glia.It was to the benefit of the survival of NSCs to add 5% fetal bovine serum(FBS)into the medium at the beginning of the culturing. When 10% FBS was added intothe medium, the neurospheres differentiated quickly. When concentration 1×106/ ml was used, the growth rate of the cells was the highest of all the concentrations. Reasonably higher cell concentration promoted the proliferation of NSCs. It was necessary to add 2% B27, EGF, and bFGF into the medium. The cells had the best growth when 2% B27, 20 ng/ml bFGF and 20 ng/ml EGF were added into the culture medium. EGF and bFGF had cooperative effect. Conclusion A better method of isolating and culturing of NSCs in neonatal rat brain is established and the foundation for future research is laid.
ObjectiveTo observe the effects on the function and structure of retina in diabetic rats by intravitreal transplantation of retinal nerve stem cells (NSC) differentiated from human umbilical cord mesenchymal stem cells (hUCMSCs). MethodsFifty clean male Sprague-Dawley rats were randomly divided into normal control with 9 rats (group A) and diabetes mellitus (DM) group with 31 rats. The DM models were induced by intraperitoneal injection of streptozocin. The rats of DM group were randomly divided into four groups after 10 weeks: rats with DM only (group B), diabetic rats with saline intravitreal injection (group C), diabetic rats with NSC intravitreal injection (group D), and 9 rats for each. The rats in the group A and B received no treatment. The retinal function was examined by the flash-electroretinogram on 2, 4, 6 weeks after intervention, the latency and amplitude of a-wave, b-wave of Rod, a-wave, b-wave of Max reactions (Max-R) and the total amplitudes of OPs were recorded. The morphological changes of retina were observed by hematoxylin-eosin staining. ResultsOn 2 and 4 weeks after the intervention, the differences of latency and amplitude of b-wave of Rod, a-wave, b-wave of Max-R and the total amplitudes of OPs among group A-D were significant (P<0.05). Compared group D with group B, C, the amplitude of b-wave of Rod, Max-R and the total amplitudes of OPs were increased (P<0.05); latency of b-wave of Max-R was decreased (P<0.05). On 6 weeks after the intervention, the amplitude of b-wave of Rod and the amplitude of a-wave, b-wave of Max-R and the total amplitudes of OPs in group D were increased compared with group B and C (P<0.05), the latency of b-wave of Rod and Max-R in group D were decreased compared with group C (P<0.05). On 10 weeks after molding, each retinal layers were disordered in diabetes mellitus group. On 2 weeks after the intervention, the number of cells in the retinal layers in group B and C were reduced compared with group A, and the structure was more disorder. On 4 weeks after the intervention, the structure of each retina layer in group D arranged less disordered, and the number of retinal ganglion cells was more than group B and C. It was also found that the retinal vascular endothelial expanded and retinal blood vessels cells proliferated. ConclusionThe function of retina in diabetes mellitus rats is improved by intravitreal injection of retinal NSCs differentiated from hUCMSCs.
Objective To investigate the division, prol iferation and differentiation abil ities of nestin+/GFAP+cell after spinal cord injury and to identify whether it has the characteristic of neural stem cells (NSCs). Methods Twelvemale SD rats, aged 8 weeks and weighing 200-250 g, were randomized into 2 groups (n=6 per group): model group inwhich the spinal cord injury model was establ ished by aneurysm cl ip compression method, and control group in which no processing was conducted. At 5 days after model ing, T8 spinal cord segment of rats in each group were obtained and the gray and the white substance of spinal cord outside the ependymal region around central tube were isolated to prepare single cellsuspension. Serum-free NSCs culture medium was adopted to culture and serum NSCs culture medium was appl ied to induce differentiation. Immunohistochemistry detection and flow cytometry were appl ied to observe and analyze the type of cells and their capabil ity of division, prol iferation and differentiation. Results At 3-7 days after injury, the model group witnessed a plenty of nestin+/GFAP+ cells in the single cell suspension, while the control group witnessed few. Cell count of the model and the control group was 5.15 ± 0.71 and 1.12 ± 0.38, respectively, indicating there was a significant difference between two groups (P lt; 0.01). Concerning cell cycle, the proportion of S-phase cell and prol iferation index of the model group (15.49% ± 3.04%, 15.88% ± 2.56%) were obviously higher than those of the control group (5.84% ± 0.28%, 6.47% ± 0.61%), indicating there were significant differences between two groups (P lt; 0.01). In the model group, primary cells gradually formed threedimensional cell clone spheres, which were small in size, smooth in margin, protruding in center and positive for nestin immunofluorescence staining, and large amounts of cell clone spheres were harvested after multi ple passages. While in the control group, no obvious cell clone spheres was observed in the primary and passage culture of single cell suspension. At 5 days after induced differentiation of cloned spheres in the model group, immunofluorescence staining showed there were a number of galactocerebroside (GaLC) -nestin+ cells; at 5-7 days, there were abundance of β-tubul in III-nestin+ and GFAP-nestin+ cells; and at 5-14 days, GaLC+ ol igodendrocyte, β-tubul in II+ neuron and GalC+ cell body and protruding were observed. Conclusion Nestin+/GFAP+ cells obtained by isolating the gray and the white substance of spinal cord outside the ependymal region around central tube after compressive spinal cord injury in adult rat has the abil ity of self-renewal and the potential of multi-polarization and may be a renewable source of NSCs in the central nervous system.
To summarize Notch, basic hel ix-loop-hel ix (bHLH) and Wnt gene signal transduction pathways in the process of differentiation and development of neural stem cells. Methods The l iterature on the gene signal transduction pathway in the process of differentiation and development of neural stem cells was searched and then summarized and analyzed. Results The formation of Nervous System resulted from common actions of multi-signal transduction pathways. There may exist a fixed threshold in the compl icated selective system among Notch, bHLH and Wnt gene signal transduction pathways. Conclusion At present, the specific gene signal transduction pathway of multi pl ication and differentiation of neural stem cells is still unclear.
【Abstract】 Objective To review the progress in the treatment of spinal cord injury (SCI) by graft of neuralstem cells (NSCs) or bone marrow mesenchymal stem cells (BMSCs) as well as immune characteristics of two stemcells. Methods Different kinds of documents were widely collected, and then immunologic characteristics of NSCs andBMSCs were summarized. The therapy of SCI by stem cell transplantation was reviewed. Additionally, some problems intreatment were analyzed. Results Experimental study showed that graft of NSCs and BMSCs can promote the functionalrecovery of the injured spinal cord in animals. Due to immunologic properties of two stem cells, rejection reaction oftransplantation could produce a harmful effect on SCI treatment. Conclusion Transplantation of NSCs or BMSCs might bean effective measure for SCI treatment, but immunologic rejection reaction must be considered.
To explore the expression of Wnt-1 during the process of inducing neural stem cells (NSCs) into neurons by using all-trans-retinoic acid (ATRA) in vitro and the effect of Wnt-1 on NSCs differentiation. Methods NSCs isolated from cerebral cortex of SD rat embryo (12-16 days’ gestation) were cultured. The concentration of cells at passage 3 were adjusted to 1 × 106 cells /mL and treated with ATRA at 0.5, 1.0, 5.0 and 10.0 μmol/L, respectively. Differentiation ratio of NSCsinto neurons in each group was detected by double-labelling immunofluorescence technique and flow cytometry, and 1.0 μmol/ L was selected as the best concentration for ATRA to promote NSCs differentiation. In experimental group, NSCs at passage 3 were cultured with ATRA at 1.0 μmol/L in vitro, and expression of Wnt-1 was detected by immunocytochemistry staining, realtime flurescent quantitive PCR and Western blot at 3, 5, 7 and 9 days after culture, respectively. The cells at passage 3 receiving no ATRA served as control group. Results Immunocytochemistry staining: in the control group, there was l ittle Wnt-1 protein expression; in the experimental group, peak expression of Wnt-1 and numerous positive cells occurred at 3 days after culture, the positive expression of Wnt-1 was still evident at 5 days after culture, and there was significant difference between two groups in integrated absorbance (IA) value at 3 and 5 days after culture(P lt; 0.05), obvious decrease of positive expression of Wnt-1 was evident, and no significant difference was evident between two groups in IA value at 7 and 9 days (P gt; 0.05). Real-time fluorescence quantitative PCR: the relative expression of Wnt-1 mRNA in the control group was 0.021 7 ± 0.072 1; the relative expression of Wnt-1 mRNA in the experimental group at 3, 5, 7 and 9 days was 0.512 2 ± 0.280 0, 0.216 4 ± 0.887 0, 0.038 5 ± 0.299 4 and 0.035 5 ± 0.309 5, respectively, indicating the value decreased over time, and there were significant difference between two groups at 3 and 5 days (P lt; 0.05), and no significant difference at 7 and 9 days (P gt; 0.05) . Western blot detection: specific and visible staining band was noted; in the control group, Wnt-1 protein expression was 0.005 1 ± 0.558 3; in the experimental group, Wnt-1 protein expression at 3, 5, 7 and 9 days was 0.451 7 ± 0.071 3, 0.311 7 ± 0.080 5, 0.007 3 ± 0.052 7 and 0.004 7 ± 0.931 4, respectively, suggesting the value decreased over time; there were significant differences between two groups at 3 and 5 days (P lt; 0.05), and no significant differences at 7 and 9 days (P gt; 0.05). Conclusion With the induction of ATRA at 1.0 μmol/L, Wnt-1 and NSCs differentiation in early stage are positively correlated. Its possible mechanism may rely on the activation of such signals as classic Wnt-1 signal pathway, indicating Wnt-1 relates to the differentation of NSCs into neurons.
ObjectiveTo observe the morphological and functional changes of retinal degeneration in mice with CLN7 neuronal ceroid-lipofuscinosis, and the therapeutic effects of glial cell derived neurotrophic factor (GDNF) and/or ciliary neurotrophic factor (CNTF) based on neural stem cells (NSC) on mouse photoreceptor cells. MethodsA total of 100 CLN7 mice aged 14 days were randomly divided into the experimental group and the control group, with 80 and 20 mice respectively. Twenty C57BL/6J mice aged 14 days were assigned as wild-type group (WT group). Mice in control group and WT group did not receive any interventions. At 2, 4, and 6 months of age, immunohistochemical staining was conducted to examine alterations in the distribution and quantity of cones, rod-bipolar cells, and cone-bipolar cells within the retinal of mice while electroretinography (ERG) examination was utilized to record scotopic a and b-waves and photopic b-wave amplitudes. At 14 days of age, the mice in the experimental group were intravitreally injected with 2 μl of CNTF-NSC, GDNF-NSC, and a 1:1 cell mixture of CNTF-NSC and GDNF-NSC (GDNF/CNTF-NSC). Those mice were then subdivided into the CNTF-NSC group, the GDNF-NSC group, and the GDNF/CNTF-NSC group accordingly. The contralateral eyes of the mice were injected with 2 μl of control NSC without neurotrophic factor (NTF) as their own control group. At 2 and 4 months of age, the rows of photoreceptor cells in mice was observed by immunohistochemical staining while ERG was performed to record amplitudes. At 4 months of age, the differentiation of grafted NSC and the expression of NTF were observed. Statistical comparisons between the groups were performed using a two-way ANOVA. ResultsCompared with WT group, the density of cones in the peripheral region of the control group at 2, 4 and 6 months of age (F=285.10), rod-bipolar cell density in central and peripheral retina (F=823.20, 346.20), cone-bipolar cell density (F=356.30, 210.60) and the scotopic amplitude of a and b waves (F=1 911.00, 387.10) in central and peripheral retina were significantly decreased, with statistical significance (P<0.05). At the age of 4 and 6 months, the density of retinal cone cells (F=127.30) and b-wave photopic amplitude (F=51.13) in the control group were significantly decreased, and the difference was statistically significant (P<0.05). Immunofluorescence microscopy showed that the NSC transplanted in the experimental group preferentially differentiated into astrocytes, and stably expressed CNTF and GDNF at high levels. Comparison of retinal photoreceptor nucleus lines in different treatment subgroups of the experimental group at different ages: CNTF-NSC group, at 2 months of age: the whole, central and peripheral regions were significantly different (F=31.73, 75.06, 75.06; P<0.05); 4 months of age: The difference between the whole area and the peripheral region was statistically significant (F=12.27, 12.27; P<0.05). GDNF/CNTF-NSC group, 2 and 4 months of age: the whole (F=27.26, 27.26) and the peripheral area (F=16.01, 13.55) were significantly different (P<0.05). In GDNF-NSC group, there was no statistical significance at all in the whole, central and peripheral areas at different months of age (F=0.00, 0.01, 0.02; P>0.05). ConclusionsCLN7 neuronal ceroid-lipofuscinosis mice exhibit progressively increasing degenerative alterations in photoreceptor cells and bipolar cells with age growing, aligning with both morphological and functional observations. Intravitreal administration of stem cell-based CNTF as well as GDNF/CNTF show therapeutic potential in rescuing photoreceptor cells. Nevertheless, the combined application of GDNF/CNTF-NSC do not demonstrate the anticipated synergistic protective effect. GDNF has no therapeutic effect on the retinal morphology and function in CLN7 neuronal ceroid-lipofuscinosis mice.
Objective To explore the effects of Neurogenesin 1 (Ng1) gene on functional recovery after spinal cord injury (SCI) and its mechanism. Methods Thirty-six rats (aging 4 months, weighing 230 g and being male or female), were randomly divided into two groups: experimental group (n=18) and control group (n=18). After spinal cord contusive injury at T10 level was made in all these rats using modified Allen’s method, Ng1 recombinant plasmid and blank plasmid were transfectedinto the damaged areas of exprimental group and control group respectively by Alzet pumps. At 1 day, 1 week, 2 weeks, 3 weeks, and 4 weeks after SCI, Basso-Beattle-Bresnahan (BBB) Rating Scale was used to observe the recovery of motor function. At 1 week after injury, the expressions of Ng1 mRNA and protein in injured spinal cord were detected by RT-PCR and Western blot techniques. And at 2 and 4 weeks, double immunofluorescence and histopathologic examinations were performed to study the prol iferation of the adult endogenous neural stem cells and pathological change after SCI. Results At 1-4 weeks after SCI, the BBB scores in the exprimental group was significantly higher than that in control group (P lt; 0.05), and at 4 weeks the BBB score of the experimental group (16.80 ± 1.79) was significantly higher than that of the control group (9.60 ± 1.67), (P lt; 0.01). RTPCR and Western blot showed that the mRNA and protein expressions of Ng1 were observed in the exprimental group and no expression was seen in the control group. Histologic observation showed that the morphology of spinal cord and neurons in the exprimental group was better than that in the control group and was close to the normal tissue. The mean number of Nestin+/ BrdU+ newborn endogenous neural stem cells in the exprimental group was significantly more than that in control group (P lt; 0.05). Conclusion Ng1 gene could promote the prol iferation of endogenous neural stem cells and protect the injured neurons, which enhances the repair of the motor function after SCI.
Objective To observe the biocompatibil ity of self-assembled FGL peptide nano-fibers scaffold with neural stem cells (NSCs). Methods FGL peptide-amphiphile (FGL-PA) was synthesized by sol id-phase peptide synthesistechnique and thereafter It was analyzed and determined by high-performance l iquid chromatography (HPLC) and massspectrometry (MS). The diluted hydrochloric acid was added into FGL-PA solution to reduce the pH value and accordinglyinduce self-assembly. The morphological features of the assembled material were studied by transmission electron microscope (TEM). NSCs were cultured and different concentrations of FGL-PA assembled material were added with the terminal concentrations of 0, 50, 100, 200, 400 mg/L, respectively. CCK-8 kit was used to test the effect of FGL assembled material on prol iferation of NSCs. NSCs were added into differentiation mediums (control group: DMEM/F12 medium containing 2% B27 supplement and 10% FBS; experimental group: DMEM/F12 medium containing 2% B27 supplement, 10% FBS and 100 mg/L FGL-PA, respectively). Immunofluorescence was appl ied to test the effect of FGL-PA assembled material on differentiation of NSCs. Results FGL-PA could be self-assembled to form a gel. TEM showed the self-assembled gel was nano-fibers with diameter of 10-20 nm and length of hundreds nanometers. After NSCs were incubated for 48 hours with different concentrations of FGL-PA assembled material, the result of CCK-8 assay showed that FGL-PA with concentrations of 50, 100 or 200 mg/L could promote the prol iferation of NSCs and absorbance of them was increased (P lt; 0.05). Immunofluorescence analysis notified that the differentiation ratio of neurons from NSCs in control group and experimental group were 46.35% ± 1.27% and 72.85% ± 1.35%, respectively, when NSCs were induced to differentiation for 14 days, showing significant difference between 2 groups (P lt; 0.05). Conclusion FGL-PA can self-assemble to nano-fiber gel, which has good biocompatibil ity and neural bioactivity.
ObjectiveTo study the possibility of the C17.2 neural stem cells (NSCs) differentiating into neural cells induced by serum-free condition medium of olfactory ensheathing cells (OECs) and to detect the cell viability of the differentiated cells. MethodsOECs were isloated and cultured from the olfactory bulbs of 3-day-old postnatal mouse to prepare serum-free condition medium of OECs. After C17.2 NSCs were cultured with H-DMEM/F12 medium containing 15% FBS and the cell fusion reached 80%, the 3rd passage cells were induced by serum-free condition medium of OECs in the experimental group, by H-DMEM/F12 in the control group, and non-induced C17.2 NSCs served as the blank control group. The growth condition of cells was observed with inverted microscope. After 5 days, the immunofluorescence staining[microtubule-associated protein 2 (MAP-2) and β-tubulin-Ⅲ] and Western blot (Nestin, β-tubulin-Ⅲ, and MAP-2) were carried out to identify the neural cells derived from NSCs. The cell viabilities were measured by MTT assay and the quantity of lactate dehydrogenase (LDH) release in the medium. ResultsIn the experimental group, the C17.2 NSCs bodies began to contract at 24 hours after induction, and the differentiated cells increased obviously with long synapse at 3 days after induction; in the control group, the cell morphology showed no obvious change at 24 hours, cell body shrinkage, condensation of nuclear chromatin, and lysis were observed at 3 days. The immunofluorescence staining showed that β-tubulin-Ⅲ and MAP-2 of C17.2 NSCs were positive at 5 days after induction, and Western blot suggested that the expression of Nestin protein declined significantly and the expressions of β-tubulin-Ⅲ and MAP-2 protein were increased in the experimental group, showing significant differences when compared with those in the control group and blank control group (P<0.05). The LDH release and the cell viability were 130.60%±6.86% and 62.20%±3.82% in the experimental group, and were 178.20%±5.44% and 18.00%±3.83% in the control group respectively, showing significant differences between 2 groups (P<0.05). The LDH release and the cell viability of experimental group and control group were significantly lower than those of blank control group (100%) (P<0.05). ConclusionNeurotrophic factors from OECs play an important role in inducing C17.2 NSCs differentiation into neural cells and keeping the viability of differentiated cells after induction.