west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Nomogram" 29 results
  • Risk factors for perioperative mortality in acute aortic dissection and the construction of a Nomogram prediction model

    ObjectiveTo investigate the value of preoperative clinical data and computed tomography angiography (CTA) data in predicting perioperative mortality risk in patients with acute aortic dissection (AAD), and to construct a Nomogram prediction model. MethodsA retrospective study was conducted on AAD patients treated at Affiliated Hospital of Zunyi Medical University from February 2013 to July 2023. Patients who died during the perioperative period were included in the death group, and those who improved during the same period were randomly selected as the non-death group. The first CTA data and preoperative clinical data within the perioperative period of the two groups were collected, and related risk factors were analyzed to screen out independent predictive factors for perioperative death. The Nomogram prediction model for perioperative mortality risk in AAD patients was constructed using the screened independent predictive factors, and the effect of the Nomogram was evaluated by calibration curves and area under the curve (AUC). ResultsA total of 270 AAD patients were included. There were 60 patients in the death group, including 42 males and 18 females with an average age of 56.89±13.42 years. There were 210 patients in the non-death group, including 163 males and 47 females with an average age of 56.15±13.77 years. Multivariate logistic regression analysis showed that type A AAD [OR=0.218, 95%CI (0.108, 0.440), P<0.001], irregular tear morphology [OR=2.054, 95%CI (1.025, 4.117), P=0.042], decreased hemoglobin [OR=0.983, 95%CI (0.971, 0.995), P=0.007], increased uric acid [OR=1.003, 95%CI (1.001, 1.005), P=0.004], and increased aspartate aminotransferase [OR=1.003, 95%CI (1.000, 1.006), P=0.035] were independent risk factors for perioperative death in AAD patients. The Nomogram prediction model constructed using the above risk factors had an AUC of 0.790 for predicting perioperative death, indicating good predictive performance. ConclusionType A AAD, irregular tear morphology, decreased hemoglobin, increased uric acid, and increased aspartate aminotransferase are independent predictive factors for perioperative death in AAD patients. The Nomogram prediction model constructed using these factors can help assess the perioperative mortality risk of AAD patients.

    Release date: Export PDF Favorites Scan
  • Construction and verification of a long-term survival prediction model for rectal cancer-Nomogram

    ObjectiveBased on a large sample of data, study the factors affecting the survival and prognosis of patients with rectal cancer and construct a prediction model for the survival and prognosis.MethodsThe clinical data of 26 028 patients with rectal cancer were screened from the Surveillance, Epidemiology, and End Results (SEER) clinical database of the National Cancer Institute. Univariate and multivariate Cox proportional hazard regression analysis were used to screen related risk factors. Finally, the Nomogram prediction model was summarized and its accuracy was verified.ResultsResult of multivariate Cox proportional hazard regression analysis showed that the risk factors affecting the survival probability of rectal cancer included: age, gender, marital status, TMN staging, T staging, tumor size, degree of tissue differentiation, total number of lymph nodes removed, positive lymph node ratio, radiotherapy, and chemotherapy (P<0.05). Then we further built the Nomogram prediction model. The C index of the training cohort and the validation cohort were 0.764 and 0.770, respectively. The area under the ROC curve (0.777 and 0.762) for 3 years and 5 years, and the calibration curves of internal and external validation all indicated that the model could effectively predict the survival probability of rectal cancer.ConclusionThe constructed Nomogram model can predict the survival probability of rectal cancer, and has clinical guiding significance for the prognostic intervention of rectal cancer.

    Release date:2021-09-06 03:43 Export PDF Favorites Scan
  • Prognostic Nomogram for gastric adenocarcinoma: a SEER database-based study

    Objective Establishing Nomogram to predict the overall survival (OS) rate of patients with gastric adenocarcinoma by utilizing the database of the Surveillance, Epidemiology, and End Results (SEER) Program. Methods Obtained the data of 3 272 gastric adenocarcinoma patients who were diagnosed between 2004 and 2014 from the SEER database. These patients were randomly divided into training (n=2 182) and validation (n=1 090) cohorts. The Cox proportional hazards regression model was performed to evaluate the prognostic effects of multiple clinicopathologic factors on OS. Significant prognostic factors were combined to build Nomogram. The predictive performance of Nomogram was evaluated via internal (training cohort data) and external validation (validation cohort data) by calculating index of concordance (C-index) and plotting calibration curves. Results In the training cohort, the results of Cox proportional hazards regression model showed that, age at diagnosis, race, grade, 6th American Joint Committee on Cancer (AJCC) stage, histologic type, and surgery were significantly associated with the survival prognosis (P<0.05). These factors were used to establish Nomogram. The Nomograms showed good accuracy in predicting OS rate, with C-index of 0.751 [95%CI was (0.738, 0.764)] in internal validation and C-index of 0.753 [95% CI was (0.734, 0.772)] in external validation. All calibration curves showed excellent consistency between prediction by Nomogram and actual observation. Conclusion Novel Nomogram for patients with gastric adenocarcinoma was established to predict OS in our study has good prognostic significance, it can provide clinicians with more accurate and practical predictive tools which can quickly and accurately assess the patients’ survival prognosis individually, and can better guiding clinicians in the follow-up treatment of patients.

    Release date:2018-10-11 02:52 Export PDF Favorites Scan
  • Risk factors for CT-guided Hook-wire accurate localization of isolated ground-glass nodules and the establishment of Nomogram prediction model

    ObjectiveTo explore the influencing factors for Hook-wire precise positioning under CT guidance, determine the best positioning management strategy, and develop Nomogram prediction model. Methods Patients who underwent CT-guided Hook-wire puncture positioning in our hospital from July 2018 to November 2022 were selected. They were randomly divided into a training set and a validation set with a ratio of 7 : 3. Clinical data of the patients were analyzed, and the logistic analysis was used to screen out the risk factors that affected CT-guided Hook-wire precise positioning for the training set. The Nomogram prediction model was constructed according to the risk factors, and the goodness of fit test and clinical decision curve analysis were performed. ResultsA total of 199 patients with CT-guided Hook-wire puncture were included in this study, including 72 males and 127 females, aged 25-83 years. There were 139 patients in the training set and 60 patients in the validation set. In the training set, 70 patients were accurately located, with an incidence of 50.36%. Logistic regression analysis showed that height [OR=3.46, 95%CI (1.44, 8.35), P=0.006], locating needle perpendicular to the horizontal plane [OR=3.40, 95%CI (1.37, 8.43), P=0.008], locating needle perpendicular to the tangent line of skin surface [OR=6.01, 95%CI (2.38, 15.20), P<0.001], CT scanning times [OR=3.03, 95%CI (1.25, 7.33), P=0.014], occlusion [OR=10.56, 95%CI (1.98, 56.48), P=0.006] were independent risk factors for CT-guided Hook-wire precise localization. The verification results of the Nomogram prediction model based on these independent risk factors showed that the area under the receiver operating characteristic curve (AUC) was 0.843 [95%CI (0.776, 0.910)], and the predicted value of the correction curve was basically consistent with the measured value. The AUC of the model in the validation set was 0.854 [95%CI (0.759, 0.950)]. The decision curves showed that when the threshold probability was within the range of 8%-85% in the training set and 18%-99% in the validation set, there was a high net benefit value. Conclusion Height, the locating needle perpendicular to the horizontal plane, the locating needle perpendicular to the tangent line of skin surface, number of CT scans, and occlusion are independent risk factors for CT-guided Hook-wire accurate localization. The Nomogram model established based on the above risk factors can accurately assess and quantify the risk of CT-guided Hook-wire accurate localization.

    Release date:2024-09-20 12:30 Export PDF Favorites Scan
  • Study on predicting the risk of retinal vein occlusion based on nomogram model and systemic risk factors

    ObjectiveTo establish and preliminarily validate a nomogram model for predicting the risk of retinal vein occlusion (RVO). MethodsA retrospective clinical study. A total of 162 patients with RVO (RVO group) diagnosed by ophthalmology examination in The Second Affiliated Hospital of Xi'an Jiaotong University from January 2017 to April 2022 and 162 patients with age-related cataract (nRVO group) were selected as the modeling set. A total of 45 patients with branch RVO, 45 patients with central RVO and 45 patients with age-related cataract admitted to Xi 'an Fourth Hospital from January 2022 to February 2023 were used as the validation set. There was no significant difference in gender composition ratio (χ2=2.433) and age (Z=1.006) between RVO group and nRVO group (P=0.120, 0.320). Age, gender, blood routine (white blood cell count, hemoglobin concentration, platelet count, neutrophil count, monocyte count, lymphocyte count, erythrocyte volume, mean platelet volume, platelet volume distribution width), and four items of thrombin (prothrombin time, activated partial thrombin time, fibrinogen, and thrombin time) were collected in detail ), uric acid, blood lipids (total cholesterol, triglyceride, high-density lipoprotein, low-density lipoprotein, lipoprotein a), hypertension, diabetes mellitus, coronary heart disease, and cerebral infarction. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio were calculated. The single logistic regression was used to analyze the clinical parameters of the two groups of patients in the modeling set, and the stepwise regression method was used to screen the variables, and the column graph for predicting the risk of RVO was constructed. The Bootstrap method was used to repeated sample 1 000 times for internal and external verification. The H-L goodness-of-fit test and receiver operating characteristic (ROC) curve were used to evaluate the calibration and discrimination of the nomogram model. ResultsAfter univariate logistic regression and stepwise regression analysis, high density lipoprotein, neutrophil count and hypertension were included in the final prediction model to construct the nomogram. The χ2 values of the H-L goodness-of-fit test of the modeling set and the validation set were 0.711 and 4.230, respectively, and the P values were 0.701 and 0.121, respectively, indicating that the nomogram model had good prediction accuracy. The area under the ROC curve of the nomogram model for predicting the occurrence of post-stroke depression in the modeling set and the verification set was 0.741 [95% confidence interval (CI) 0.688-0.795] and 0.741 (95%CI 0.646-0.836), suggesting that the nomogram model had a good discrimination. ConclusionsLow high density lipoprotein level, high neutrophil count and hypertension are independent risk factors for RVO. The nomogram model established based on the above risk factors can effectively assess and quantify the risk of post-stroke depression in patients with cerebral infarction.

    Release date: Export PDF Favorites Scan
  • Construction and validation of a prognostic nomogram model for gastric cancer liver metastasis

    Objective To establish a prediction model for the 1-, 3-, and 5-year survival rates in patients with gastric cancer liver metastases (GCLM) by analyzing prognostic factors based on the Surveillance, Epidemiology, and End Results (SEER) database. Methods Clinical and pathological data from 591 patients diagnosed with GCLM between 2010 and 2015 were obtained from the SEER database. The population was randomly divided into a training cohort and an internal validation cohort at a 7 to 3 ratio. Independent predictors of GCLM were analyzed using univariate and multifactorial Cox regression. Consequently, nomograms were constructed. The model's accuracy was verified by calibration curve, ROC curve, and the C-index, and the clinical utility of the model was analyzed through decision curve analysis. Results Tumor differentiation grade, surgical status, and chemotherapy were significantly associated with the prognosis of GCLM patients, and these three factors were included in constructing the prognostic model and plotting the nomogram. The C-index was 0.706 (95%CI 0.677 to 0.735) and 0.749 (95%CI 0.710 to 0.788) for the training set and the internal validation cohort, respectively. The results of the ROC curve analysis indicated that the area under the curve (AUC) was over 0.7 at 1, 3, and 5 years for both the training and validation cohorts. Conclusion The prediction model of the GCLM is developed based on the 3 factors, i.e., tumor differentiation grade, surgery, and chemotherapy, and shows good prediction accuracy and thus may promote clinical decision making and individualized treatment of GCLM patients.

    Release date: Export PDF Favorites Scan
  • Nomogram of survival after surgery for intermediate to advanced medullary thyroid cancer based on AJCC TNM staging: a SEER database analysis

    Objective To establish a predictive model for long-term tumor-specific survival after surgery for patients with intermediate to advanced medullary thyroid cancer (MTC) based on American Joint Committee on Cancer (AJCC) TNM staging, by using the Surveillance, Epidemiology, and End Results (SEER) Database. Methods The data of 692 patients with intermediate to advanced MTC who underwent total thyroidectomy and cervical lymph node dissection registered in the SEER database during 2004–2017 were extracted and screened, and were randomly divided into 484 cases in the modeling group and 208 cases in the validation group according to 7∶3. Cox proportional hazard regression was used to screen predictors of tumor-specific survival after surgery for intermediate to advanced stage MTC and to develop a Nomogram model. The accuracy and usefulness of the model were tested by using the consistency index (C-index), calibration curve, time-dependent ROC curve and decision curve analysis (DSA). Results In the modeling group, the multivariate Cox proportional hazard regression model indicated that the factors affecting tumor-specific survival after surgery in patients with intermediate to advanced MTC were AJCC TNM staging, age, lymph node ratio (LNR), and tumor diameter, and the Nomogram model was developed based on these results. The modeling group had a C-index of 0.827 and its area under the 5-year and 10-year time-dependent ROC curves were 0.865 [95%CI (0.817, 0.913)], 0.845 [95%CI (0.787, 0.904)], respectively, and the validation group had a C-index of 0.866 and its area under the 5-year and 10-year time-dependent ROC curves were 0.866 [95%CI (0.798, 0.935)] and 0.923 [95%CI (0.863, 0.983)], respectively. Good agreement between the model-predicted 5- and 10-year tumor-specific survival rates and the actual 5- and 10-year tumor-specific survival rates were showed in both the modeling and validation groups. Based on the DCA curve, the new model based on AJCC TNM staging was developed with a significant advantage over the former model containing only AJCC TNM staging in terms of net benefits obtained by patients at 5 years and 10 years after surgery. Conclusion The prognostic model based on AJCC TNM staging for predicting tumor-specific survival after surgery for intermediate to advanced MTC established in this study has good predictive effect and practicality, which can help guide personalized, precise and comprehensive treatment decisions and can be used in clinical practice.

    Release date:2023-09-13 02:41 Export PDF Favorites Scan
  • Establishment and validation of nomogram model for visual prognosis of macular edema secondary to retinal branch vein occlusion treated with ranibizumab

    Objective To explore the influencing factors of visual prognosis of macular edema secondary to branch retinal vein occlusion (BRVO-ME) after treatment with ranibizumab, and construct and verify the nomogram model. MethodsA retrospective study. A total of 130 patients with BRVO-ME diagnosed by ophthalmology examination in the Department of Ophthalmology, Liuzhou Red Cross Hospital from January 2019 to December 2021 were selected in this study. All patients received intravitreal injection of ranibizumab. According to the random number table method, the patients were divided into the training set and the test set with a ratio of 3:1, which were 98 patients (98 eyes) and 32 patients (32 eyes), respectively. According to the difference of logarithm of the minimum angle of resolution (logMAR) best corrected visual acuity (BCVA) at 6 months after treatment and logMAR BCVA before treatment, 98 patients (98 eyes) in the training set were divided into good prognosis group (difference ≤-0.3) and poor prognosis group (difference >-0.3), which were 58 patients (58 eyes) and 40 patients (40 eyes), respectively. The clinical data of patients in the two groups were analyzed, univariate and multivariate logistic regression analysis were carried out for the different indicators, and the visualization regression analysis results were obtained by using R software. The consistency index (C-index), convolutional neural network (CNN), calibration curve and receiver operating characteristic (ROC) curve were used to verify the accuracy of the nomogram model. ResultsUnivariate analysis showed that age, disease course, outer membrane (ELM) integrity, elliptical zone (EZ) integrity, BCVA, center macular thickness (CMT), outer hyperreflective retinal foci (HRF), inner retina HRF, and the blood flow density of retinal deep capillary plexus (DCP) were risk factors affecting the visual prognosis after treatment with ranibizumab in BRVO-ME patients (P<0.05). Multivariate logistic regression analysis showed that course of disease, ELM integrity, BCVA and outer HRF were independent risk factors for visual prognosis after ranibizumab treatment for BRVO-ME patients (P<0.05). The ROC area under the curve of the training set and the test set were 0.846[95% confidence interval (CI) 0.789-0.887) and 0.852 (95%CI 0.794 -0.873)], respectively; C-index were 0.836 (95%CI 0.793-0.865) and 0.845 (95%CI 0.780-0.872), respectively. CNN showed that the error rate gradually stabilized after 300 cycles, with good model accuracy and strong prediction ability. ConclusionsCourse of disease, ELM integrity, BCVA and outer HRF were independent risk factors of visual prognosis after ranibizumab treatment in BRVO-ME patients. The nomogram model based on risk factors has good differentiation and accuracy.

    Release date:2023-06-16 05:21 Export PDF Favorites Scan
  • Construction and Validation of a Nomogram Prediction Model for Pain Crisis Occurrence in Patients with Advanced Non-Small Cell Lung Cancer

    ObjectiveTo construct a nomogram prediction model for pain crisis occurrence based on clinical data of patients with advanced non-small cell lung cancer (NSCLC), with the aim of providing a scientific basis for clinical decision-making.MethodsA total of patients with advanced non-small cell lung cancer (NSCLC) admitted to our hospital from January 2022 to January 2024 were selected as the study subjects. Demographic data, disease information, pain severity (assessed using the Numerical Rating Scale, NRS), psychological status (anxiety and depression assessed using the Self-Rating Anxiety Scale, SAS, and the Self-Rating Depression Scale, SDS), and social support (assessed using the Perceived Social Support Scale, PSSS) were collected. Univariate and multivariate Logistic regression analyses were performed to identify independent factors influencing pain crisis. The R software was used to visualize the nomogram, and the Receiver Operating Characteristic (ROC) curve, calibration curve, and Hosmer-Lemeshow test were employed to evaluate the discrimination and calibration of the model.ResultsA total of 500 questionnaires were distributed, and 448 qualified questionnaires were collected, with a qualification rate of 89.6%. The patients were divided into a modeling group (n=314) and a validation group (n=134). Univariate analysis showed significant differences between the pain crisis group and the pain-free group in terms of gender, age, education level, PSSS score, bone metastases, pleural metastases, depression and anxiety levels, and antitumor efficacy (P<0.05). Multivariate Logistic regression analysis showed that bone metastasis, PSSS score, age, depression, and anxiety levels were independent factors influencing pain crisis in patients with advanced NSCLC. Based on the results of the multivariate Logistic regression analysis, a nomogram prediction model for pain crisis occurrence in patients with advanced NSCLC was constructed. The Area Under the Curve (AUC) of the ROC curve in the modeling and validation groups was 0.948 and 0.921, respectively, indicating high discrimination of the model. The calibration curve and Hosmer-Lemeshow test results showed good consistency of the model.ConclusionThis study successfully constructed and validated a nomogram prediction model based on independent factors such as bone metastasis, social support (PSSS score), age, depression, and anxiety levels. This model can objectively and quantitatively predict the risk of pain crisis occurrence in patients with advanced NSCLC, providing a scientific basis for clinical decision-making. It helps identify high-risk patients with pain crisis in advance and optimize pain management strategies, thereby improving patient prognosis and quality of life.

    Release date: Export PDF Favorites Scan
  • Development and validation of a nomogram for predicting the prognosis of acute exacerbation of chronic obstructive pulmonary disease combined with type II respiratory failure

    Objective To develop and validate a nomogram model that can be used to predict the prognosis of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients with type II respiratory failure. Methods A retrospective analysis was conducted on the clinical data of 300 hospitalized AECOPD patients in the People’s Hosipital of Leshan from August 2016 to December 2021. Patients were grouped into a training cohort (n=210) and a validation cohort (n=90) in a 7:3 ratio. The variables for the patients in the training cohort were selected using the least absolute shrinkage and selection operator (LASSO), followed by multivariate logistic regression analysis to identify independent risk factors of poor prognosis in AECOPD with type II respiratory failure, and a nomogram model was constructed. Receiver operating characteristic (ROC) curves were plotted for the training and validation cohorts, and the area under ROC curve (AUC) was calculated.The model was validated by conducting the Hosmer-Lemeshow test, drawing calibration curves, and performing decision curve analysis(DCA).ResultsCardiovascular disease, lymphocyte percentage, and red cell distribution width-standard deviation(RDW-SD) were identified as independent risk factors of poor prognosis for AECOPD patients with type II respiratory failure (P<0.05). The AUC values for the training and validation cohorts were 0.742 (95%CI: 0.672-0.812) and 0.793 (95%CI: 0.699-0.888), respectively. The calibration curves of the two cohorts are close to the desirable curves.The Hosmer-Lemeshow test P-values were greater than 0.05, indicating good clinical practicality. The DCA curve indicates that the model has good clinical value. Conclusions The clinical prediction model, based on factors such as cardiovascular disease, lymphocyte percentage, and RDW-SD, showed good predictive value for AECOPD patients complicated by type II respiratory failure.

    Release date:2024-12-27 01:23 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content