ObjectiveTo establish 16HBE cell lines stably expressing glutathione S-transferase mu 5 (GSTM5) gene, and explore the mechanism of GSTM5 nuclear translocation. MethodsRecombinant lentiviral expression vector containing GSTM5 gene was constructed and lentivirus was produced. After lentivirus infection of 16HBE cells, 16HBE-GSTM5 cell lines were obtained by screening with puromycin. Expression of GSTM5 in different cells was examined by RT-qPCR and Western blot. The nuclear translocation of GSTM5 was observed by confocal laser scanning microscope, after the 16HBE-GSTM5 cell lines were treated with tumor necrosis factor-α (TNF-α; 10 ng/ml) for 0.5 hour. ResultsLentiviral expression plasmids, PLVX-puro-3*flag-SBP-GSTM5-C and PLVX-puro-GSTM5-SBP-3*flag-N, were constructed and lentiviral particles were successfully packed. After infected with lentivirus and screened by puromycin, two cell lines, 16HBE-GSTM5-SBP-3*flag-N and 16HBE-3*flag-SBP-GSTM5-C, were obtained. GSTM5 expression in these two cell lines was significantly higher compared with the control group and parental cells. After treated with TNF-α for 0.5 hour, the nuclear translocation of GSTM5 in 16HBE-GSTM5-SBP-3*flag-N was much more obviously than that in 16HBE-3*flag-SBP-GSTM5-C. ConclusionThe N-terminal region of GSTM5 is critical for nuclear translocation induced by TNF-α, which is mediated by a novel and non-classical nuclear localization signal.
ObjectiveTo explore the relationship between nuclear factor κB (NFκB) and the occurrence, metastasis, and treatment of colon cancer. MethodsThe literature on the structure and the property of molecular biology of NFκB, the relationship between NFκB and apopotosis, malignant tumor and colon cancer were reviewed.ResultsNFκB had action of antiapopotosis. The occurrence of malignant tumor had close relation with the oncogene by NFκB, the metastasis of malignant tumor was that cell of cancer escaped the killing and supervising of immunity by NFκB. NFκB affected the occurrence and metastasis of colon cancer by regulating cmyc, Cox2, ICAM1.Conclusion NFκB has important action in the occurrence and metastasis of colon cancer. It will become a new target of treatment.
ObjectiveTo detect the metabolites of the serum and joint fluid from rabbits’ osteoarthritis model with 1H nuclear magnetic resonance spectroscopy (NMR) technique, study the metabolic differences and connections of serum, synovial and cartilage of rabbits after the articular cavity injection of sodium hyaluronate, and explore osteoarthritis and metabolic mechanism in the process of treating sodium hyaluronate using sodium hyaluronate, thus provide new ideas and basis of the specific mechanisms in the treatment of osteoarthritis via sodium hyaluronate.MethodsWe selected 30 healthy New Zealand white rabbits, 6 months old, and randomly divided them into three groups as follows: blank control group, model phosphate buffer saline (PBS) liquid injection group and model injection of sodium hyaluronate group, with 10 rabbits in each group. Ten weeks after surgery, all experimental animals were put to death and observed in correlation studies regarding general condition, imaging examination, and histological examination. Metabolites 1H NMR detection and data preprocessing were performed in the serum and joint fluid samples.ResultsThe results considering general condition, general sample observation, imaging examination and histology indicated advantages in sodium hyaluronate group over PBS group. Metabolomics analysis showed statistically significant changes of metabolites in the serum and joint fluid compared with the PBS group and the blank control group (P<0.05). According to the relevant ways of differences metabolites retrieval, analysis found that the effect of sodium hyaluronate on osteoarthritis might be related to protein biosynthesis, amino acid circulation, the metabolic process of pyruvic acid, gluconeogenesis and other metabolic pathways.ConclusionsBased on the research of 1H-NMR metabolomics, the results suggest that the effect of sodium hyaluronate on osteoarthritis is mainly related with the activation of protein metabolism, abnormal lipid and energy metabolic pathways. This study provides new ideas and basis on the concrete mechanism in the treatment of knee osteoarthritis using sodium hyaluronate.
【 Abstract 】 Objective Overexpressions of epidermal growth factor (EGF) and EGF receptor have been associated with progression and invasive phenotype of pancreatic cancer. However, the underlying molecular mechanism by which EGF worked in pancreatic cancer cells has not been completely understood. In this study, effect of EGF on the invasion and metastasis of pancreatic cancer cells and its regulatory mechanism were investigated. Methods The effects of EGF on the proliferation, adhesion and invasion of pancreatic cancer cells were detected by WST-1 proliferation assay, adhesion assay and invasive assay, respectively. The activity and expression of MMP-2 and MMP-9 were examined by zymography, Western blot and RT-PCR, respectively. The activity of NF- κ B was examined by EMSA. Results EGF could significantly promote the invasiveness of pancreatic cancer cells but did not affect cell proliferation or adhesion. The expressions of NF- κ B and MMP-9 were significantly increased by EGF, but EGF did not affect the activity and expression of MMP-2. Furthermore, EGF stimulated the NF- κ B binding activity. Pretreatment with NF- κ B inhibitors, pyrrolidine dithiocarbamate (PDTC), could significantly inhibit the activity of NF- κ B induced by EGF. Meanwhile, the EGF-induced expression and activity of MMP-9, as well as cell invasiveness were also inhibited by NF- κ B inhibitor. Conclusion EGF could increase the expression and promote the invasiveness of MMP-9 via the activation of NF- κ B in pancreatic cancer cells, which implies that NF- κ B inhibitant, such as PDTC, may diminish the invasiveness of pancreatic cancer cells.
Objective The usefulness of measurement of nuclear DNA content elevation for diagnosis of early hepatocellular carcinoma was evaluated by a study of 186 patients with liver cirrhosis. Methods Nuclear DNA content was measured using an automatic image analysis system.Results ①Hepatocellular carcinoma was found in 37 patients during 10 years follow-up, the cumulative incidence of hepatocellular carcinoma was 19.89%. ②The incidence of hepatocellular carcinoma increased with the increase of the patterns of α-fetoprotein (AFP), 5c exceeding rate (5cER), FORM PE, but positive predictive value of 5cER was the highest of three parameters, the difference among all groups was significant by the χ2 test (P<0.05). ③When 5cER joined AFP for monitoring development of hepatocellular carcinoma, the incidence of hepatocellular carcinoma was 72.00%, which was significantly higher than that of 5cER or AFP alone, the difference between groups was highly significant (P<0.01). Conclusion Patients who had 5cER levels of 3%-5% or more, who had transient increases in 5cER or who had both, should be treated as being in a super-highrisk group for hepatocellular carcinoma. Frequent and careful examination by ultrasonography of such patients is recommended. It is important that measurement of 5cER join with AFP in cirrhotic patients monitored for early development of hepatocellular carcinoma.
Objective To observe and preliminarily explore the effect of mogroside on oxidative stress of retinal pigment epitheliaum (RPE) cells induced by hydrogen peroxide (H2O2) and its possible mechanism. MethodsA experimental study. The RPE cells were divided into control group, H2O2 group, silent information regulator of transcription 1 (SIRT1) inhibitor EX527 group (EX527 group), mogroside group, mogroside+EX527 group. Methyl thiazolete trazolium method was used to detect cell survival rate. Flow cytometry was used to detect cell apoptosis rate. 2',7'-dichlorodihydrofluorescein diacetate fluorescent probe method, xanthine method and enzyme-linked immunosorbent assay method were used to detect the level of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cells respectively. Real-time quantitative polymerase chain reaction and Western blot were used to detect relative expressions of SIRT1, nuclear factor erythroid-2-related actor 2 (Nrf2), heme oxygenase-1 (HO-1) mRNA and protein in cells. One-way ANOVA was used for comparison among groups. The pairwise comparison between groups was tested by the least significant difference t test. Results Compared with the control group, the H2O2 group cell survival rate decreased, the apoptosis rate increased, the ROS level in the cells increased, the SOD activity decreased, the MDA content increased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein decreased (P<0.05). Compared with H2O2 group, the cell survival rate decreased, apoptosis rate increased, the cell ROS level increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein expression decreased in EX527 group (P<0.05); the cell survival rate increased, apoptosis rate decreased, ROS level decreased, SOD activity increased, MDA content decreased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein increased in mogroside group (P<0.05). Compared with the mogrosides group, the cell survival rate decreased, the apoptosis rate increased, the level of ROS increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein decreased in mogrosides+EX527 group (P<0.05). ConclusionsMogrosides can alleviate the oxidative stress response of visual RPE cells induced by H2O2, promote cell proliferation, and reduce cell apoptosis. Mogrosides may exert antioxidant effects by activating the SIRT1/Nrf2 signaling pathway.
OBJECTIVE:To investigate the diagnostic meaning of MRI in intraocular tumors. METHODS:Forty-six cases of confirmed intraocular tumors,including choroidal melanoma(20 cases),retinoblastoma(18 cases),Coats disease(6 cases)and choroidal hemangioma(2 cases),were studied with MRI and compared with ultrasonography and CT. RESULTS:In making discoveries about intraocular tumors,there were no sighificant difference between MRI and B-ultrasonography or CT (P>0.03,chi;2=1.0716)while there were highly statistic sighificance in dediding characters and position (P<0.01,deceding character chi;2=29.8314,positionchi;2=13.659)of them. CONCLUSION:Among the examinations to find out about the position,character and secondary pathological insults of in traocular tumors MRI might be more available than CT and ultrasonography. (Chin J Ocul Fundus Dis,1997,13:93-95 )
Objective To observe the effects of exogenous pulmonary surfactant (PS) on ventilation-induced lung injury (VILI) in rats, and to investigate its possible mechanisms. Methods A total of 40 Wistar rats were divided into 4 groups with randomized blocks method: control group, high tidal volume (HV) group, VILI group, and PS group, with 10 rats in each group. The control group was subjected to identical surgical procedure but was never ventilated. After 30 min of mechanical ventilation (MV) with Vt 45 ml/kg, the rats in HV group were killed immediately; rats in the VILI group were continually ventilated for up to 150 min with Vt 16 ml/kg; in the PS group, 100 mg/kg of PS administered intratracheally and with the same settings as VILI group. Mean artery pressure (MAP), blood gas analysis, lung wet to dry weight ratios (W/D), thorax-lung compliance, and cell counts in bronchoalveolar lavage fluid (BALF) were determined. Nuclear factor-κB(NF-κB) activity in lungs was measured by enzyme-linked immunosorbent assay (ELISA), interleukin-8(IL-8) in serum and BALF was determined by radioimmunoassay (RIA). Pathological examination of the lung was performed. Results Injurious ventilation significantly decreased MAP and PaO2/FiO2, but increased NF-κB activity and W/D. MAP and PaO2/FiO2 improved, but NF-κB activity, IL-8 in serum and BALF, and cell counts in BALF reduced significantly in PS group compared with those in VILI group. Histological studies showed reduced pulmonary edema and atelectasis in the PS group. Conclusion PS administered intratracheally can suppress the increased activity of NF-κB induced by VILI, exogenous PS can be used to treat VILI.
Objective Series of compl icated molecule signal pathway are involved in the bone regeneration. To explore the possibil ity of nuclear factore kappa B (NF-κB) which is taken as the “key activation” during the fracture healing and provide the laboratory evidence for the gene therapy of nonunion or delayed union of fractures. Methods Thirtythree adult male Wistar rats (weighing 180-220 g) were selected and divided randomly into 4 groups: group A (the control group, n=3), the rigth lower segments of radius were injected with normal sal ine 0.3 mL for 7 days, once per day; group B (Bay 11-7082 injection group, n=6), the middle and distal radius were injected with normal sal ine containing 50 μmol/L NF- κB inhibitor Bay 11-7082 0.3 mL for 7 days, once per day; group C (fracture group, n=12), the right middle and distal radius were cut by a sharp scissors to form per fracture model; and group D (Bay 11-7082 treatment group, n=12), based on group C, 0.3 mL of 50 μmol/L Bay 11-7082 were injected into the fracture site for 7 days, once per day. The callus tissues were harvested at 3, 7, 14, and 28 days after fracture for Western blot analysis, alkal ine phosphatase (ALP) activity assessment, prostaglandins E2 (PGE2) production assay, and histological observation. Results The rats of all groups were survivaltill the experiment completion. At 3 and 7 days after injection, there was no significant difference in the ALP activity and PGE2 production between group B and group A (P gt; 0.05); but group C was significantly higher than group A (P lt; 0.01) and group D was significantly lower than group A (P lt; 0.01). The expressions of NF-κB p65, bone morphogenetic protein 7 (BMP-7), and inhibitor of DNA binding 2 (Id2) were observed at fracture sites of 4 groups. There was no significant difference in the expressions of NF-κB p65, BMP-7, and Id2 between group B and group A (P gt; 0.05); the expressions of NF-κB p65 and BMP-7 were significantly higher and the expression of Id2 was significantly lower in group C than group A (P lt; 0.01); and the expressions of NF-κB p65 and BMP-7 were significantly lower and the expression of Id2 was significantly higher in group D than group A (P lt; 0.01). The histological observation showed that a lot of osseous callus formed in group C at 14 and 28 days, but osseous callus just began to form in group D at 28 days. Conclusion NF-κB p65 can facil itate early fracture heal ing of rat radius by elevating the PGE2 production and regulating BMP-7 and Id2 expression.
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important factor for cells to resist oxidative stress and electrophilic attack. It is involved in the formation and control of oxidative stress defense pathways. It is associated with oxidative stress-related diseases, including cancer, neurodegenerative diseases, cardiovascular diseases and aging, and is a potential pharmacological target for the treatment of chronic diseases. This article will review the important role of Nrf2 in the regulation of cell proliferation, including direct regulation of cell proliferation, regulation of reactive oxygen species, intracellular metabolism, regulation of mitochondrial function, cell lifespan and inflammatory response. The aim is to provide a theoretical basis for further research on how to use Nrf2 to regulate cell proliferation.