Mixed reality technology is new digital holographic imaging technology that generates three-dimensional simulation images through computers and anchors the virtual images to the real world. Compared with traditional imaging diagnosis and treatment methods, mixed reality technology is more conducive to the advantages of precision medicine, helps to promote the development of medical clinical application, teaching and scientific research in the field of orthopedics, and will further promote the progress of clinical orthopedics toward standardization, digitization and precision. This article briefly introduces the mixed reality technology, reviews its application in the perioperative period, teaching and diagnosis and treatment standardization and dataization in the field of orthopedics, and discusses its technical advantages, aiming to provide a reference for the better use of mixed reality technology in orthopedics.
Precision medicine is a personalized medical system based on patients' individual biological information, clinical symptoms and signs, forming a new clinical research model and medical practice path. The basic idea of traditional Chinese medicine and the concept of precision medicine share many similarities. The basket trial developed for precision medicine is also suitable for clinical trials and evaluation of the efficacy of traditional Chinese medicine syndrome differentiation and treatment systems. Basket trials are used to evaluate the efficacy of a drug in the treatment of multiple diseases or disease subtypes. It has the advantages of sharing a master protocol, unifying management of subsidiary studies, simplifying the test implementation process, unifying statistical analysis, saving resources, reducing budgets and accelerating the drug evaluation progress. This is similar to the concept of using the "same treatment for different diseases" found in traditional Chinese medicine. This paper introduced the concept and method of basket trials and explored their application and advantages in clinical research into traditional Chinese medicine. This study is expected to provide references for the methodological innovation of clinical research into traditional Chinese medicine.
ObjectiveTo categorize and describe stroke-patients based on factors related to patient reported outcomes. MethodsA questionnaire survey was conducted among stroke-patients in nine hospitals and communities in Shanxi Province. The general information questionnaire and stroke-patient reported outcome manual (Stroke-PROM) were completed. Latent profile analysis was used to analyze the scores of Stroke-PROM, and the explicit variables of the model were the final scores of each dimension. ANOVA and correlation analysis were used to measure the correlation between the factors and subtypes. ResultsFour unique stroke-patient profiles emerged, including a low physiological and low social group (9%), a high physiological and middle social group (40%), a middle physiological and middle social group (26%), and a middle physiological and high social group (25%). There were significant differences in scores of four areas among patients with different subtypes (P<0.05). Moreover, there was a correlation between age, payment, exercise and subtypes (P<0.05). ConclusionThere are obvious grouping characteristics for stroke patients. It is necessary to focus on stroke patients who are advanced in age, have a self-funded status and lack exercise, and provide targeted nursing measures to improve their quality of life.
Retinitis pigmentosa (RP) is an inherited retinal disease characterized by degeneration of retinal pigment epithelial cells. Precision medicine is a new medical model that applies modern genetic technology, combining living environment, clinical data of patients, molecular imaging technology and bio-information technology to achieve accurate diagnosis and treatment, and establish personalized disease prevention and treatment model. At present, precise diagnosis of RP is mainly based on next-generation sequencing technology and preimplantation genetic diagnosis, while precise therapy is mainly reflected in gene therapy, stem cell transplantation and gene-stem cell therapy. Although the current research on precision medicine for RP has achieved remarkable results, there are still many problems in the application process that is needed close attention. For instance, the current gene therapy cannot completely treat dominant or advanced genetic diseases, the safety of gene editing technology has not been solved, the cells after stem cell transplantation cannot be effectively integrated with the host, gene sequencing has not been fully popularized, and the big data information platform is imperfect. It is believed that with the in-depth research of gene sequencing technology, regenerative medicine and the successful development of clinical trials, the precision medicine for RP will be gradually improved and is expected to be applied to improve the vision of patients with RP in the future.
Abstract Precision medicine is an ideal medical paradigm which combines modern scientific methods with traditional medical methods to diagnose, treat and evaluate the physical function and nature of diseases more precisely, and to maximize health benefits and minimize the risk of individuals and society with the most effective, safest, and the most economical medical service. Evidence-based medicine is necessary to verify the precision of diagnosis and treatment. In this review, we clarified the conception of precision medicine and the relation between precision medicine and evidence-based medicine. Moreover, we reviewed the application of precision medicine in the field of cerebrovascular disease. We pointed out that such new technologies as genetics, bioinformatics, molecular imaging and management provided tools to realize the idea of precision medicine, and high-quality evidence-based studies provided a guarantee for the clinical practice of precision medicine. In summary, precision medicine is an individualized medical mode that based on the context of a patient's genetic information, living environment and clinical data, etc. to provide precise treatment strategies for the prevention and treatment of disease, but still the promotion of precision medicine should be based on clinical validation under the guidance of evidence-based medicine. Thus, long-term exploration and unremitting efforts are required to achieve the idea of precision medicine.
ObjectiveTo summarize current patient-derived organoids as preclinical cancer models, and its potential clinical application prospects. MethodsCurrent patient-derived organoids as preclinical cancer models were reviewed according to the results searched from PubMed database. In addition, how cancer-derived human tumor organoids of pancreatic cancer could facilitate the precision cancer medicine were discussed. ResultsThe cancer-derived human tumor organoids show great promise as a tool for precision medicine of pancreatic cancer, with potential applications for oncogene modeling, gene discovery and chemosensitivity studies. ConclusionThe cancer-derived human tumor organoids can be used as a tool for precision medicine of pancreatic cancer.
Basing on development of medical model, new national diagnostic standard is interpreted according to three aspects: classification, diagnostic standard, and diagnostic contents. Tracheobronchial tuberculosis and tuberculous pleurisy are added into the classification. The value of molecular and pathological techniques for diagnosis of the pulmonary tuberculosis is emphasized. The status of drug-resistance is included in the diagnostic content. Two opinions are suggested: some practical methods such as diagnostic chemotherapy are indicated in some grassroots areas, while new molecular techniques for detection of DNA/RNA of mycobacteria and resistant mutation are encouraged in some suitable institutions.
Precision medicine is a novel medical modality based on genome sequencing, bioinformatics and big data science. The studies regarding tuberculosis always concentrated on the bacteria and host in the setting of precision medicine. This review mainly introduces the application of precision medicine in the diagnosis and treatment of tuberculosis. The limits of the Chinese studies with respect to precision medicine in tuberculosis are also discussed. Moreover, the article predicates its future development.
In order to promote the responsible development of precision medicine in China, the current situation of precision medicine in three major fields (clinical, research and commercial) was briefly introduced, and key ethical issues or disputes in each field (including informed consent, return of incidental findings, and allocation of medical resources in the clinical field; informed consent, return of research results, and data use and sharing in the research field; genetic counseling, clinical utility of genetic testing, and use of data in the field of direct-to-consumer genetic testing) were discussed. It is necessary to actively meet these ethical challenges for the development of precision medicine in China.
Precision medicine is a medical paradigm founded on individual genetic information amalgamated with extensive clinical data to offer patients precise diagnoses and treatments. Genetic testing forms the cornerstone of accurate diagnosis, and skilled professionals in fields like clinical medicine, molecular biology, and bioinformatics play a crucial role in realizing the potential of precision medicine. This paper presents reference suggestions for the continuing education approach for relevant technical personnel. The main emphasis is on conducting routine face-to-face and hands-on training to enhance theoretical knowledge and professional skills. Secondly, there is a need to modify the training approach by reinforcing molecular biology, bioinformatics, and other courses, enhancing assessment methods, gradually implementing specialized training in precision medicine subspecialties, and ensuring effective clinical practice and management of precision medicine.