ObjectiveTo explore the risk factors for accompanying depression in patients with community type Ⅱ diabetes and to construct their risk prediction model. MethodsA total of 269 patients with type Ⅱ diabetes accompanied with depression and 217 patients with simple type Ⅱ diabetes from three community health service centers in two streets of Pingshan District, Shenzhen from October 2021 to April 2022 were included. The risk factors were analyzed and screened out, and a logistic regression risk prediction model was constructed. The goodness of fit and prediction ability of the model were tested by the Hosmer-Lemeshow test and the receiver operating characteristic (ROC) curve. Finally, the model was verified. ResultsLogistic regression analysis showed that smoking, diabetes complications, physical function, psychological dimension, medical coping for face, and medical coping for avoidance were independent risk factors for depressive disorder in patients with type Ⅱ diabetes. Modeling group Hosmer-Lemeshow test P=0.345, the area under the ROC curve was 0.987, sensitivity was 95.2% and specificity was 98.6%. The area under the ROC curve was 0.945, sensitivity was 89.8%, specificity was 84.8%, and accuracy was 86.8%, showing the model predictive value. ConclusionThe risk prediction model of type Ⅱ diabetes patients with depressive disorder constructed in this study has good predictive and discriminating ability.
ObjectiveTo verify the existing domestic and foreign formulas of normal predictive value indicator for adult pulmonary diffusion capacity’s applicability at current stage in Kunming.MethodsBased on the pulmonary diffusion capacity parameters determination of diffusion capacity for carbon monoxide of the lung (DLCO) collected from one-breath breathing test completed by 680 adults with healthy lung function and without any disease which may cause pulmonary diffusion dysfunctions in Kunming, the regression equation of adult DLCO normal predicted value in Kunming was initially established; the fitting degree of DLCO predicted value and measured value was verified; and the correlation between European adults (instrument-inherent ECCS93) and the normal predicted values of adult DLCO in Shanghai, Chongqing and Lhasa were calculated and contrasted.ResultsThe regression equation of adult DLCO normal predicted value in Kunming was initially established: for male, 0.483+0.063×height (cm)+0.041×weight (kg)–0.071×age (years); for female, 1.679+0.055×height (cm)+0.018×weight (kg)–0.060×age (years). The data collected from the one-breath breathing test were similar to the predicted values obtained from the normal adult male and female DLCO prediction formulas in Kunming, the difference was not statistically significant (tM=–0.167, tF=–0.436, both P>0.05), suggesting that the formula for predicting the value established in this study was valid and well fitted. The predicted value of adult DLCO in Kunming area was statistically significant compared with the adult DLCO estimates of European adults and Lhasa, Chongqing and Shanghai in China (FM=713.4, FF=1 442.2, both P<0.001). Lhasa had the highest value; Kunming was the second highest; instrument-inherent European area and Chongqing came to third and fourth; and Shanghai had the lowest predicated adult DLCO value (all P<0.001).ConclusionThe current predictive formulas for adult pulmonary diffusion capacity indicators in China and worldwide are not suitable for the populations in Kunming.
ObjectiveTo systematically review mortality risk prediction models for acute type A aortic dissection (AAAD). MethodsPubMed, EMbase, Web of Science, CNKI, WanFang Data, VIP and CBM databases were electronically searched to collect studies of mortality risk prediction models for AAAD from inception to July 31th, 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Systematic review was then performed. ResultsA total of 19 studies were included, of which 15 developed prediction models. The performance of prediction models varied substantially (AUC were 0.56 to 0.92). Only 6 studies reported calibration statistics, and all models had high risk of bias. ConclusionsCurrent prediction models for mortality and prognosis of AAAD patients are suboptimal, and the performance of the models varies significantly. It is still essential to establish novel prediction models based on more comprehensive and accurate statistical methods, and to conduct internal and a large number of external validations.
ObjectiveTo explore the independent factors related to clinical severe events in community acquired pneumonia patients and to find out a simple, effective and more accurate prediction method.MethodsConsecutive patients admitted to our hospital from August 2018 to July 2019 were enrolled in this retrospective study. The endpoint was the occurrence of severe events defined as a condition as follows intensive care unit admission, the need for mechanical ventilation or vasoactive drugs, or 30-day mortality during hospitalization. The patients were divided into severe event group and non-severe event group, and general clinical data were compared between two groups. Multivariate logistic regression analysis was performed to identify the independent predictors of adverse outcomes. Receiver operating characteristic (ROC) curve was constructed to calculate and compare the area under curve (AUC) of different prediction methods.ResultsA total of 410 patients were enrolled, 96 (23.4%) of whom experienced clinical severe events. Age (OR: 1.035, 95%CI: 1.012 - 1.059, P=0.003), high-density lipoprotein (OR: 0.266, 95%CI: 0.088 - 0.802, P=0.019) and lactate dehydrogenase (OR: 1.006, 95%CI: 1.004 - 1.059, P<0.001) levels on admission were independent factors associated with clinical severe events in CAP patients. The AUCs in the prediction of clinical severe events were 0.744 (95%CI: 0.699 - 0.785, P=0.028) and 0.814 (95%CI: 0.772 - 0.850, P=0.025) for CURB65 and PSI respectively. CURB65-LH, combining CURB65, HDL and LDH simultaneously, had the largest AUC of 0.843 (95%CI: 0.804 - 0.876, P=0.022) among these prediction methods and its sensitivity (69.8%) and specificity (81.5%) were higher than that of CURB65 (61.5% and 76.1%) respectively.ConclusionCURB65-LH is a simple, effective and more accurate prediction method of clinical severe events in CAP patients, which not only has higher sensitivity and specificity, but also significantly improves the predictive value when compared with CURB65.
ObjectiveTo investigate the predictive factors of portal vein thrombosis (PVT) before and after splenectomy and gastroesophageal devascularization for liver cirrhosis with portal hypertension. MethodsSixty-one cases of liver cirrhosis with portal hypertension who underwent splenectomy and gastroesophageal devascularization were enrolled retrospectively. The patients were divided into PVT group and non-PVT group based on the presence or absence of postoperative PVT on day 7. The clinical factors related with PVT were analyzed. ResultsThere were 25 cases in the DVT group and 36 cases in the non-DVT group. The results of univariate analysis showed that the preoperative platelet (P=0.006), activated partial thromboplastin time (P=0.048), prothrombin time (P=0.028), and international normalized ratio (P=0.029), postoperative fibrin degradation product (P=0.002) and D-dimer (P=0.014) on day 1, portal venous diameter (P=0.050) had significant differences between the DVT group and non-DVT group. The results of logistic multivariate regression analysis showed that the preoperative platelet (OR=0.966, 95% CI 0.934-1.000, P=0.048) and postoperative fibrin degradation product on day 1(OR=1.055, 95% CI 1.011-1.103, P=0.017) were correlated with the PVT. The PVT might happen when preoperative platelet was less than 34.5×109/L (sensitibity 80.6%, specificity 60.0%) or postoperative fibrin degradation product on day 1 was more than 64.75 mg/L (sensitibity 48.0%, specificity 91.7%). ConclusionPreoperative platelet and postoperative fibrin degradation product on day 1 might predict PVT after splenectomy and gastroesophageal devascularization for liver cirrhosis with portal hypertension.
ObjectiveThis study intends to analyze the changing disease burden of mood disorders in China from 1990 to 2021 and project the epidemiological trends in the next two decades. MethodsThis study uses data from the Global Burden of Disease (GBD) 2021 database on three mood disorders in China (bipolar disorder, major depressive disorder, and dysthymia) from 1990 to 2021. The indicators such as age-standardized number of diseases and disability-adjusted life years (DALYs) were used to explore the characteristics of time, gender, and age distribution of the disease burden of mental disorders. The BAPC model was used to predict the disease burden in the next two decades. ResultsIn 2021, the number of cases of dysthymia, MDD, and BD in China was 27.84 million, 26.0 million, and 2.85 million, with an increase of 73.24%, 38.33%, and 36.79% compared with 1990, respectively. In 2021, DALYs of dysthymic disorder, MDD and BD were 2.67 million, 5.2 million and 0.61 million person-years, which increased by 71.45%, 34.29% and 34.76% compared with 1990, respectively. The burden of mood disorders is heavier among women and the middle-aged and elderly population. In addition, it is expected that ASPR and ASDR of dysthymia will continue to increase after a brief decline, MDD will show a downward trend, while BD will show a slight upward trend in the next two decades. ConclusionThe disease burden of mood disorders in China remains substantial, with dysthymia and BD showing persistent upward tendency. More resources should be invested in mental health care.
Objective To observe the correlation between the level of advanced glycosylation end products (AGE) in skin and diabetic retinopathy (DR), and establish and preliminatively verify the nomogramolumbaric model for predicting the risk of DR. MethodsA clinical case-control study. A total of 346 patients with type 2 diabetes mellitus (T2DM) who were admitted to the Department of Endocrinology and Ophthalmology of the First Affiliated Hospital of Zhengzhou University from January 2023 to June 2024 were included in the study. Among them, 198 were males and 148 were females. The mean age was (54.77±10.92). According to whether the patients were accompanied by DR, the patients were divided into the non-DR group (NDR group) and the DR group (DR group), 174 and 172 cases, respectively. All patients underwent skin AGE detection using a noninvasive diabetes detector. Diabetes duration, hemoglobin A1c (HbA1c), fasting plasma glucose, Urea, creatinine (Crea), uric acid, total cholesterol, triglyceride, estimated glomerular filtration rate (eGFR), urinary albumin concentration (UALB), and body mass index (BMI) were collected in detail. Univariate analysis and multivariate logistic regression analysis were used to determine the independent risk factors for T2DM concurrent DR, and to construct a nomogram prediction model for DR risk. Receiver operating characteristic curve (ROC curve), calibration curve and decision curve (DCA) were used to evaluate the model. ResultsHypertension prevalence rate (χ2=3.892), Diabetes duration (Z=−7.708), BMI (Z=−2.627), HbA1c (Z=−4.484), Urea (Z=−4.620), Crea (Z=−3.526), UALB (Z=−6.999), AGE (Z=−8.097) in DR group were significantly higher than those in NDR group, with statistical significance (P<0.05); eGFR was lower than that in NDR group, the difference was statistically significant (Z=−6.061, P<0.05). Logistic regression analysis showed that AGE, diabetes duration, HbA1c, UALB and eGFR were independent risk factors for DR (P<0.05). Based on the results of multi-factor regression analysis, a nomogram prediction model was constructed. The area under ROC curve of the model was 0.843, 95% confidence interval was 0.802-0.884, sensitivity and specificity were 79.1% and 75.9%, respectively. The calibration curve was basically consistent with the ideal curve. The results of DCA analysis showed that when the model predicted the risk threshold of patients with DR between 0.17 and 0.99, the clinical net benefit provided by the nomogram model was>0. ConclusionsSkin AGE level is an independent risk factor for DR. The nomogram prediction model based on AGE, diabetes duration, HbA1c, eGFR and UALB can accurately predict the risk of DR, and has good clinical practicability.
ObjectiveConstructing a prediction model for seizures after stroke, and exploring the risk factors that lead to seizures after stroke. MethodsA retrospective analysis was conducted on 1 741 patients with stroke admitted to People's Hospital of Zhongjiang from July 2020 to September 2022 who met the inclusion and exclusion criteria. These patients were followed up for one year after the occurrence of stroke to observe whether they experienced seizures. Patient data such as gender, age, diagnosis, National Institute of Health Stroke Scale (NIHSS) score, Activity of daily living (ADL) score, laboratory tests, and imaging examination data were recorded. Taking the occurrence of seizures as the outcome, an analysis was conducted on the above data. The Least absolute shrinkage and selection operator (LASSO) regression analysis was used to screen predictive variables, and multivariate Logistic regression analysis was performed. Subsequently, the data were randomly divided into a training set and a validation set in a 7:3 ratio. Construct prediction model, calculate the C-index, draw nomogram, calibration plot, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) to evaluate the model's performance and clinical application value. ResultsThrough LASSO regression, nine non-zero coefficient predictive variables were identified: NIHSS score, homocysteine (Hcy), aspartate aminotransferase (AST), platelet count, hyperuricemia, hyponatremia, frontal lobe lesions, temporal lobe lesions, and pons lesions. Multivariate logistic regression analysis revealed that NIHSS score, Hcy, hyperuricemia, hyponatremia, and pons lesions were positively correlated with seizures after stroke, while AST and platelet count were negatively correlated with seizures after stroke. A nomogram for predicting seizures after stroke was established. The C-index of the training set and validation set were 0.854 [95%CI (0.841, 0.947)] and 0.838 [95%CI (0.800, 0.988)], respectively. The areas under the ROC curves were 0.842 [95%CI (0.777, 0.899)] and 0.829 [95%CI (0.694, 0.936)] respectively. Conclusion These nine variables can be used to predict seizures after stroke, and they provide new insights into its risk factors.
ObjectiveTo review individual treatment effect (ITE) models developed from randomized controlled trials, with the aim of systematically summarizing the current state of model development and assessing the risk of bias. MethodsPubMed and Embase databases were searched for studies published between 1990 and 14 June 2024. Data were extracted using the CHARMS inventory, and the PROBAST risk of bias tool was used to assess model quality. ResultsA total of 11 publications were included, containing 19 ITE models. The ITE modelling methods were regression models with interaction terms (n=8, 42.1%), dual-range models (n=5, 26.3%) and machine learning (n=6, 31.6%). The ITE models had a reporting rate of 78.9%, 73.2% and 10.5% for differentiation, calibration and clinical validity, respectively. Fourteen models were assessed as having a high risk of bias (73.7%), particularly in the area of statistical analysis, due to inappropriate handling of missing data (n=15, 78.9%), inappropriate consideration of model fit issues (n=5, 26.3%), etc. ConclusionCommon approaches to ITE model development include constructing interaction terms, dual procedure theory, and machine learning, but suffer from a low number of model developments, more complex modeling methods, and non-standardized reporting. In the future, emphasis should be placed on further exploration of ITE models, promoting diversified modeling methods and standardized reporting to improve the clinical promotion and practical application value of the models.
This paper introduced the fundamental theory, method advantages, application scenario and R software implementation method of the covariate-adjusted receiver operating characteristic (ROC) curve. Compared with the traditional univariate ROC curve, the covariate-adjusted ROC curve has distinct methodological advantages and wider application scenarios, which can help to evaluate the ability of markers to predict the targeted outcome more scientifically. It merits more widespread and prior adoption in practical research.