Lung cancer has brought tough challenges to human health due to its high incidence and mortality rate in the current practice. Nowadays, computed tomography (CT) imaging is still the most preferred diagnostic tool for early screening of lung cancer. However, a great challenge brought from accumulative CT imaging data can not meet the demand of the current clinical practice. As a novel kind of artificial intelligence technique aimed to deal with medical images, a computer-aided diagnosis has been found to provide useful auxiliary information, attenuate the workload of doctors, and significantly improve the efficiency and accuracy for clinical diagnosis of lung cancer. Therefore, an effective combination of computer-aided techniques and CT imaging has increasingly become an active area of investigation in early diagnosis of lung cancer. This review aims to summarize the latest progress on the diagnostic value of computer-aided technology with regard to early stage lung cancer from the perspectives of machine learning and deep learning.
Objective To develop an innovative recognition algorithm that aids physicians in the identification of pulmonary nodules. MethodsPatients with pulmonary nodules who underwent thoracoscopic surgery at the Department of Thoracic Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School in December 2023, were enrolled in the study. Chest surface exploration data were collected at a rate of 60 frames per second and a resolution of 1 920×1 080. Frame images were saved at regular intervals for subsequent block processing. An algorithm database for lung nodule recognition was developed using the collected data. ResultsA total of 16 patients were enrolled, including 9 males and 7 females, with an average age of (54.9±14.9) years. In the optimized multi-topology convolutional network model, the test results demonstrated an accuracy rate of 94.39% for recognition tasks. Furthermore, the integration of micro-variation amplification technology into the convolutional network model enhanced the accuracy of lung nodule identification to 96.90%. A comprehensive evaluation of the performance of these two models yielded an overall recognition accuracy of 95.59%. Based on these findings, we conclude that the proposed network model is well-suited for the task of lung nodule recognition, with the convolutional network incorporating micro-variation amplification technology exhibiting superior accuracy. Conclusion Compared to traditional methods, our proposed technique significantly enhances the accuracy of lung nodule identification and localization, aiding surgeons in locating lung nodules during thoracoscopic surgery.
ObjectiveTo reveal and demonstrate the hotspots and further research directions in screening technology for early lung cancer, and provide references for the future studies. MethodsResearches related to lung cancer screening from 2011 to 2021 in the Web of Science database were included. Biblioshiny, a bibliometrics program based on R language, was used to perform content analysis and visualization of the included literature information. ResultsResearches related to lung cancer screening were increasing year by year. Six major cooperation groups were formed between countries. The current research hotspots in the field of early lung cancer screening technology mainly focused on the multi-directional fusion of radiographic imaging, liquid biopsy and artificial intelligence. ConclusionLow-dose spiral CT screening is still the most important and mainstream method for the screening of early lung cancer at present. The combination and integration of artificial intelligence with various screening methods and the innovation of novel testing and diagnostic equipment are the current research hotspots and the future research trend in this field.
ObjectiveTo explore the influencing factors for Hook-wire precise positioning under CT guidance, determine the best positioning management strategy, and develop Nomogram prediction model. Methods Patients who underwent CT-guided Hook-wire puncture positioning in our hospital from July 2018 to November 2022 were selected. They were randomly divided into a training set and a validation set with a ratio of 7 : 3. Clinical data of the patients were analyzed, and the logistic analysis was used to screen out the risk factors that affected CT-guided Hook-wire precise positioning for the training set. The Nomogram prediction model was constructed according to the risk factors, and the goodness of fit test and clinical decision curve analysis were performed. ResultsA total of 199 patients with CT-guided Hook-wire puncture were included in this study, including 72 males and 127 females, aged 25-83 years. There were 139 patients in the training set and 60 patients in the validation set. In the training set, 70 patients were accurately located, with an incidence of 50.36%. Logistic regression analysis showed that height [OR=3.46, 95%CI (1.44, 8.35), P=0.006], locating needle perpendicular to the horizontal plane [OR=3.40, 95%CI (1.37, 8.43), P=0.008], locating needle perpendicular to the tangent line of skin surface [OR=6.01, 95%CI (2.38, 15.20), P<0.001], CT scanning times [OR=3.03, 95%CI (1.25, 7.33), P=0.014], occlusion [OR=10.56, 95%CI (1.98, 56.48), P=0.006] were independent risk factors for CT-guided Hook-wire precise localization. The verification results of the Nomogram prediction model based on these independent risk factors showed that the area under the receiver operating characteristic curve (AUC) was 0.843 [95%CI (0.776, 0.910)], and the predicted value of the correction curve was basically consistent with the measured value. The AUC of the model in the validation set was 0.854 [95%CI (0.759, 0.950)]. The decision curves showed that when the threshold probability was within the range of 8%-85% in the training set and 18%-99% in the validation set, there was a high net benefit value. Conclusion Height, the locating needle perpendicular to the horizontal plane, the locating needle perpendicular to the tangent line of skin surface, number of CT scans, and occlusion are independent risk factors for CT-guided Hook-wire accurate localization. The Nomogram model established based on the above risk factors can accurately assess and quantify the risk of CT-guided Hook-wire accurate localization.
Early diagnosis of lung cancer is difficult because of it’s lacking in distinctive clinical characteristics. With the development of CT technology for chest, the detection rate of pulmonary nodules is increasing year by year and acquires extensive attention. Therefore, the accurate clinical diagnosis to identify the character of solitary pulmonary nodules is urgently needed. However, the current clinical applications of different diagnosis have pluses and minuses. In this paper, we mainly review the diagnosis, management strategies and the existing problems of solitary pulmonary nodules based on the cancer-screening guidelines of Fleischner Society, American College of Chest Physicians, National Comprehensive Cancer Network, Evaluation of Pulmonary Nodules: Clinical Practice Consensus Guidelines for Asia, and Chinese Consensus on Pulmonary Nodules, and clinical research progress of pulmonary nodules.
Objective To explore the efficacy of a novel detection technique of circulating tumor cells (CTCs) to identify benign and malignant lung nodules. Methods Nanomagnetic CTC detection based on polypeptide with epithelial cell adhesion molecule (EpCAM)-specific recognition was performed on enrolled patients with pulmonary nodules. There were 73 patients including 48 patients with malignant lesions as a malignant group and 25 patients with benign lesion as a benign group. There were 13 males and 35 females at age of 57.0±11.9 years in the malignant group and 11 males and 14 females at age of 53.1±13.2 years in the benign group. e calculated the differential diagnostic efficacy of CTC count, and conducted subgroup analysis according to the consolidation-tumor ratio, while compared with PET/CT on the efficacy. Results CTC count of the malignant group was significantly higher than that of the benign group (0.50/ml vs. 0.00/ml, P<0.05). Subgroup analysis according to consolidation tumor ratio (CTR) revealed that the difference was statistically significant in pure ground glass (pGGO) nodules 1.00/mlvs. 0.00/ml, P<0.05), but not in part-solid or pure solid nodules. For pGGO nodules, the area under the receiver operating characteristic (ROC) curve of CTC count was 0.833, which was significantly higher than that of maximum of standardized uptake value (SUVmax) (P<0.001). Its sensitivity and specificity was 80.0% and 83.3%, respectively. Conclusion The peptide-based nanomagnetic CTC detection system can differentiate malignant tumor and benign lesions in pulmonary nodules presented as pGGO. It is of great clinical potential as a noninvasive, nonradiating method to identify malignancies in pulmonary nodules.
Objective The management of pulmonary nodules is a common clinical problem, and this study constructed a nomogram model based on FUT7 methylation combined with CT imaging features to predict the risk of adenocarcinoma in patients with pulmonary nodules. Methods The clinical data of 219 patients with pulmonary nodules diagnosed by histopathology at the First Affiliated Hospital of Zhengzhou University from 2021 to 2022 were retrospectively analyzed. The FUT7 methylation level in peripheral blood were detected, and the patients were randomly divided into training set (n=154) and validation set (n=65) according to proportion of 7:3. They were divided into a lung adenocarcinoma group and a benign nodule group according to pathological results. Single-factor analysis and multi-factor logistic regression analysis were used to construct a prediction model in the training set and verified in the validation set. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination of the model, the calibration curve was used to evaluate the consistency of the model, and the clinical decision curve analysis (DCA) was used to evaluate the clinical application value of the model. The applicability of the model was further evaluated in the subgroup of high-risk CT signs (located in the upper lobe, vascular sign, and pleural sign). Results Multivariate logistic regression analysis showed that female, age, FUT7_CpG_4, FUT7_CpG_6, sub-solid nodules, lobular sign and burr sign were independent risk factors for lung adenocarcinoma (P<0.05). A column-line graph prediction model was constructed based on the results of the multifactorial analysis, and the area under the ROC curve was 0.925 (95%CI 0.877 - 0.972 ), and the maximum approximate entry index corresponded to a critical value of 0.562, at which time the sensitivity was 89.25%, the specificity was 86.89%, the positive predictive value was 91.21%, and the negative predictive value was 84.13%. The calibration plot predicted the risk of adenocarcinoma of pulmonary nodules was highly consistent with the risk of actual occurrence. The DCA curve showed a good clinical net benefit value when the threshold probability of the model was 0.02 - 0.80, which showed a good clinical net benefit value. In the upper lobe, vascular sign and pleural sign groups, the area under the ROC curve was 0.903 (95%CI 0.847 - 0.959), 0.897 (95%CI 0.848 - 0.945), and 0.894 (95%CI 0.831 - 0.956). Conclusions This study developed a nomogram model to predict the risk of lung adenocarcinoma in patients with pulmonary nodules. The nomogram has high predictive performance and clinical application value, and can provide a theoretical basis for the diagnosis and subsequent clinical management of pulmonary nodules.
Surgical resection is the only radical method for the treatment of early-stage non-small cell lung cancer. Intraoperative frozen section (FS) has the advantages of high accuracy, wide applicability, few complications and real-time diagnosis of pulmonary nodules. It is one of the main means to guide surgical strategies for pulmonary nodules. Therefore, we searched PubMed, Web of Science, CNKI, Wanfang and other databases for nearly 30 years of relevant literature and research data, held 3 conferences, and formulated this consensus by using the Delphi method. A total of 6 consensus contents were proposed: (1) Rapid intraoperative FS diagnosis of benign and malignant diseases; (2) Diagnosis of lung cancer types including adenocarcinoma, squamous cell carcinoma, others, etc; (3) Diagnosis of lung adenocarcinoma infiltration degree; (4) Histological subtype diagnosis of invasive adenocarcinoma; (5) The treatment strategy of lung adenocarcinoma with inconsistent diagnosis on degree of invasion between intraoperative FS and postoperative paraffin diagnosis; (6) Intraoperative FS diagnosis of tumor spread through air space, visceral pleural invasion and lymphovascular invasion. Finally, we gave 11 recommendations in the above 6 consensus contents to provide a reference for diagnosis of pulmonary nodules and guiding surgical decision-making for peripheral non-small cell lung cancer using FS, and to further improve the level of individualized and precise diagnosis and treatment of early-stage lung cancer.
ObjectiveTo explore the efficiency of Ki-67 expression and CT imaging features in predicting the degree of invasion of lung adenocarcinoma. MethodsThe clinical data of 217 patients with pulmonary nodules, who were diagnosed as suspicious lung cancer by multi-disciplinary treatment clinic of pulmonary nodules in our hospital from September 2017 to August 2021, were retrospectively analyzed. There were 84 males and 133 females, aged 52 (25-84) years. The patients were divided into two groups according to the infiltration degree, including an adenocarcinoma in situ and microinvasive adenocarcinoma group (n=145) and an invasive adenocarcinoma group (n=72). ResultsThere was no statistical difference in the age and gender between the two groups (P>0.05). The univariate analysis showed that CK-7, P63, P40 and CK56 expressions were not different between the two groups (P=0.172, 0.468, 0.827, 0.313), while Napsin A, TTF-1 and Ki-67 expressions were statistically different (P=0.002, 0.020, <0.001). The multivariate analysis showed that Ki-67 expression was statistically different between the two groups (P<0.001). Ki-67 was positively correlated with malignant features of CT images and the degree of lung adenocarcinoma invasion (P<0.05). Ki-67 and CT imaging features alone could predict the degree of lung adenocarcinoma invasion, but their sensitivity and specificity were not high. Ki-67 combined with CT imaging features could achieve a higher prediction efficiency.ConclusionCompared with Ki-67 or CT imaging features alone, the combined prediction of Ki-67 and imaging features is more effective, which is of great significance for clinicians to select the appropriate operation occasion.
ObjectiveTo explore and analyze the risk factors of pleural invasion in patients with small nodular type stage ⅠA pulmonary adenocarcinoma.MethodsFrom June 2016 to December 2017, 168 patients with small nodular type stage ⅠA pulmonary adenocarcinoma underwent surgical resection in the First Affiliated Hospital of Nanjing Medical University. There were 59 males and 109 females aged 58.7±11.5 years ranging from 28 to 83 years. The clinical data were analyzed retrospectively. Single factor Chi-square test and multivariate logistic regression were used to analyze the independent risk factors of pleural invasion.ResultsAmong 168 patients, 20 (11.9%) were pathologically confirmed with pleural invasion and 148 (88.1%) with no pleural invasion. Single factor analysis revealed significant differences (P<0.05) in nodule size, nodule status, pathological type, relation of lesion to pleura (RLP), distance of lesion to pleura (DLP), epidermal growth factor receptor (EGFR) mutation between patients with and without pleural invasion in stage ⅠA pulmonary adenocarcinoma. Logistic multivariate regression analysis showed that significant differences of nodule size, nodule status, RLP, DLP and EGFR mutation existed between the two groups (P<0.05), which were independent risk factors for pleural invasion.ConclusionImageological-pathological-biological characteristics of patients with small nodular type stage ⅠA pulmonary adenocarcinoma are closely related to pleural invasion. The possibility of pleural invasion should be evaluated by combining these parameters in clinical diagnosis and treatment.