One eye each in 3 groups of 12 pigmented rabbits after bilateral vitrectomy received 0.5mg, 1mg or 2mg triamcinolone acetonide (TA), respectively. The fellow eye received only balance saline solution as control. Ophthalmoscopy and electroretinography were performed during 1 day to 38 days after vitrectomy and drug injection. Light and electronmicroscopic studies were done on the 28th day. The particles of drug were visible on day 28 in all TA-treated eyes. Administration of 0. 5rug and 1mg TA did not result in different changes in ERG b-wave amplitudes compared with those in control eyes(P>0. 05). There were significant elevations of ERG b-wave in 2mg TA eyes compared to the control eyes(Plt;0.05), Both ligbt and electronmicroscopy of the retina in these groups were almost normal. The results showed no Toxielties in TA treated eye up to 2mg after vitrectomy. This offers the experimental evidence as a baseline for combining TA with vitrectomy to reduce recurrence of proliferative vitreoretinopathy. (Chin J Ocul Fundus Dis,1996,12: 105- 107)
The damage effects of the pure tumor necrosis factor (TNF) on the normal animals were observed. Eighteeen rabbits were divided into two groups, eight in tested group and ten in control group. 0.5mg per kg of the pure rabbit TNF was given to each animal of the tested group. Results:The symptoms similar to that induced by endotoxin appeared after the TNF injection. The functions of the main organs were markedly damaged. The arterial blood pressure of most animal was low. The weight ratio of the orgen to the body was raised. The pathologic changes were similar to those of the multiple organ failure (MOF) model. Most of the animal died before the end of the experiment. The results suggest that pure TNF could indece multiple organ damages similar to those of MOF.
Objective To explore the regulator factor of osteogenes is induced by the fibroblast in vitro so as to provide enough seeding cells for the bon e tissue engineering. Methods The fibroblasts were isolated and purified from granu lation of New Zealand rabbits, and they were incubated in the media offibronectin (FN) 10, 20, 40, 60 and 80 μg/ml, respectively, in the experimenta l grou ps 1- 5,but there was no FN in the control group. The markers for osteogenic features were investigated by fibroblast morphogenesis,calcium nodules formationratios,labeling of tetracycline fluorescence, labeling of 3H-TdR, determination of o steocaline, and labeling of 3H-proline within 2 weeks. Results The morphologic al changes of the fibroblasts were manifested as transference from a long spindle to a round or multiple form, shifted nucleus increased in number, confluenced and formed multilayered structure. There was a piling-up of calcium crystals that were gradually merged into foggy substances. The foggy substances increased and formed nodules. The calcium nodules formation ratios were as follows: 15.35%± 3.45%in the control group, and 53.73%± 9.49%, 75.21%± 9.80%, 98.34%± 15.2 0%, 61.83%± 10.04%, and 45.11%± 8.70% in the experimental groups 1.5 ,respectively. There was a significant difference between the control group and the 5 experimental groups at 14 days (Plt;0.05), and a significant differenc e be tween the experimental group 3 and the other experimental groups at 14 days (Plt;0.05). The histochemical study on the nodules with the specific labeling of tet racycline fluorescence indicated that the nodules were composed of new bones. Conclusion Fibronectin can stimulate the fibroblast to prolifer ate, secrete osteocaline, and synthesize collagen fibrils. Fibronectin, in an optimal dose of 40 -60 μg/ml, is capable of inducing the fibroblast to form the bone.
Objective To investigate the preparation of decellularized Achilles tendons and the effect of co-culture of human fibroblasts on the scaffold so as to provide a scaffold for the tissue engineered ligament reconstruction. Methods Achilles tendons of both hind limbs were harvested from 10 male New Zealand white rabbits (5-month-old; weighing, 4-5 kg). The Achilles tendons were decellularized using trypsin, Triton X-100, and sodium dodecyl sulfate (SDS), and then gross observation, histological examination, and scanning electron microscope (SEM) observation were performed; the human fibroblasts were seeded on the decellularized Achilles tendon, and then cytocompatibility was tested using the cell counting kit 8 method at 1, 3, 5, 7, and 9 days after co-culture. At 4 weeks after co-culture, SEM, HE staining, and biomechanical test were performed for observing cell-scaffold composite, and a comparison was made with before and after decellularization. ResultsAfter decellularization, the tendons had integrated aponeurosis and enlarged volume with soft texture and good toughness; there was no loose connective tissue and tendon cells between tendon bundles, the collagen fibers arranged loosely with three-dimensional network structure and more pores between tendon bundles; and it had good cytocompatibility. At 4 weeks after co-culture, cells migrated into the pores, and three-dimensional network structure disappeared. By biomechanical test, the tensile strength and Young’s elastic modulus of the decellularized Achilles tendon group decreased significantly when compared with normal Achilles tendons group and cell-scaffold composite group (P lt; 0.05), but no significant difference was found between normal Achilles tendons group and cell-scaffold composite group (P gt; 0.05). There was no significant difference in elongation at break among 3 groups (P gt; 0.05). ConclusionThe decellularized Achilles tendon is biocompatible to fibroblasts. It is suit for the scaffold for tissue engineered ligament reconstruction.
Objective To investigate the osteogenesis effects of angiopoietin 1 (Ang-1) gene transfected bone marrow mesenchymal stem cells (BMSCs) seeded on β tricalcium phosphate (β-TCP) scaffolds (tissue engineered bone) with platelet-rich plasma (PRP). Methods BMSCs were isolated from bone marrow tissue of rabbits. The Ang-1 gene was transfected into the BMSCs at passage 2 by lentivector, which were seeded on β-TCP scaffolds with PRP (0.5 mL) after 48 hours of transfection. Bilateral radial segmental bone defects (15 mm in length) were created in 20 3-month-old New Zealand rabbits. Then the tissue engineered bone with the Ang-1 gene transfected BMSCs (experimental group) and untransfected BMSCs (control group) were implanted into the defects in the right and left radius, respectively. X-ray, histology, immunohistochemistry, and biomechanics observations were done at 2, 4, 8, and 12 weeks after operation. Results In vitro, the transfected rate was over 90% and RT-PCR showed that the Ang-1 expression were significantly increased after transfection. The X-ray films showed that some callus formed at 4 weeks, partial bony union was observed at 8 weeks, and complete union at 12 weeks in experimental group; and bone union was not observed at 12 weeks in control group. HE staining showed that capillary appeared at 8 weeks and more capillaries were observed in new bone at 12 weeks in experimental group; only a few capillaries were observed at 12 weeks in control group. At 8 and 12 weeks, the microvascular density were (50.1 ± 7.8) /mm2 and (66.1 ± 3.5) /mm2 in experimental group and were 0 and (30.3 ± 7.2)/mm2 in control group, showing significant differences between 2 groups at 12 weeks (Z= —2.107, P=0.031). Immunohistochemistry examination showed that the positive cells can be found at 8 weeks in experimental group. And the biomechanical analysis showed that maximum loads of experimental group were significantly higher than those of control group in three-point bending test and compression test at 12 weeks (P lt; 0.05). Conclusion The tissue engineered bone with PRP and Ang-1 can increase the osteogenic properties by enhancing capillary regeneration, thus it can be used to repair radial segmental bone defects of rabbit.
ObjectiveTo investigate the feasibility of establishing intervertebral disc degeneration (IDD) model by using minimally invasive acupuncture and rotary-cutting. MethodsForty New Zealand white rabbits [male or female, (2.9±0.3) kg in weight] were randomly divided into control group (n=20) and experimental group (n=20). No treatment was done in the control group; percutaneous puncture was performed on L4, 5 and L5, 6 intervertebral disc by using 18G needle under C-arm X-ray monitoring for rotary-cutting of nucleus pulposus to promote degeneration of the disc in the experimental group. At 4, 8, 12, and 16 weeks after operation, general observation and MRI observation were done, and intervertebral disc degeneration was accessed based on Pfirrmann grade; the specimens were harvested for Masson staining and Safranine O staining. ResultsThe nucleus pulposus showed dark colors and reduced elasticity in the experimental group when compared with the control group. T2-weighted MRI images indicated that the disc signal intensity of control group had no obvious change at early stage, and weakened slightly at late stage; disc signal intensity of the experimental group decreased with time. According to Pfirrmann grade for disc degeneration, disc degeneration degree was significantly aggravated with time in 2 groups (P < 0.05); degeneration was significantly more severe in the experimental group than the control group at the other time points (P < 0.05) except 4 weeks (P > 0.05). Masson staining results showed that irregular arrangement of annulus with integrate structure was observed in the control group with time; the annulus of the experimental group arranged in disorder, or even disc fibrous circle rupture appeared with time. Safranin O staining showed that the nucleus pulposus cells reduced significantly in the experimental group, but did not in the control group. ConclusionMinimally invasive acupuncture and rotary-cutting could successfully establish the IDD model in rabbits.
Objective To investigate the feasibil ity of using thermo-sensitive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP). Methods Three-month-old neonatal New Zealand rabbits (male or female) weighing 150-200 g were selected to isolate and culture NP cells. The thermo-sensitive chitosan hydrogel scaffold wasmade of chitosan, disodium β-glycerophosphate and hydroxyethyl cellulose. Its physical properties and gross condition were observed. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viabil ity of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by SEM 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of Col II mRNA were analyzed by RT-PCR 21 days after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at 37 (15 minutes) due to crossl inking reaction. Acridine orange-propidiumiodide staining showed that the viabil ity rate of NP cells in chitosan hydrogel was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, toluidine blue, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of Col II and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold were 0.631 ± 0.064 and 0.832 ± 0.052, respectively,showing more strengths of producing matrix than that of monolayer culture (0.528 ± 0.039, 0.773 ± 0.046) with a significant difference (P lt; 0.05). Conclusion With good cellular compatibilities, the thermo-sensitive chitosan hydrogel makes it possible for NP cells to maintain their normal morphology and secretion after compound culture, and may be a potential NP cells carrier for tissue engineered NP.
Objective To explore the expression and effect of heme oxygenase-1 ( HO-1) in ventilator-induced lung injury. Methods Twenty-four New Zealand rabbits were randomly assigned to three groups, ie. a conventional ventilation + PEEP group( C group) , a ventilator-induced lung injury group( VILI group) , and a VILI + HO-1 inducer hemin group( Hm group) .Western blot and immunohistochemistry assay were used to investigate the expression of HO-1 protein. Blood gas analysis, lung wet /dry ratio, lunghistopathology and lung injury score were used to evaluate lung injury. Results HO-1 protein expression significantly increased in the VILI group compared with the C group. HO-1 was found mainly in alveolar epithelial cells and vascular endothelial cells, as well as in alveolar macrophages and neutrophils. Compared with the VILI group, HO-1 protein and PaO2 /FiO2 increased, while lung wet/dry ratio and lung injury score decreased in the Hmgroup significantly( P lt;0. 05) . Conclusion High HO-1 expression can alleviate lung injury from large tidal volume ventilation, implying its protective role in lung pathogenesis.
PURPOSE:To investigate the approaches for transplanting retinal pigment epithelium. METHODS,Retinal pigment epithelial eells(RPR)of pigmented rabbits' eyes prepared by rotalne preparation of our institute,were transphmted in 18 unpigmemed rabbits'eyes.Eight eyes were undergone outer approach, i.e., transplanting the RPR cells to the subretinal space of recipient eyes by way of perforating sclera and choroid;while 10 eyes were undergone internal approach by way of the routine procedure of vitrectomy with making artificial localized retinal delachment. Light and transmisskm electrone microscopy examination were done at 10th, goth, 40th and 90th day after the operation. RESULTS: In internal approach group,tbe operated eyes,revealed no difference in thickness of the neural retinal layer in transplanted and non-transplanted area 40 days after operation tinder light microscope. Transmission electrone microscopy revealed postoperatively the transplanted RPE cells attached to the Brucb's membrane and the outer segments of photoreeeplive ceils located at a normal position at the 40th dayland the secondary lysozymes with engulfed outer segment were found in the Iransplamed cells at the 90th day. Tbe outer approached operations in eight eyes were failed owing to ehoroid hemorrhage or perforation of retina. CONCLUSION:The internal appraach procedure is much effebtive and practical for transplantation of RPE cells. (Chin J Ocul Fundus Dis,1997,13:160-162)
Objective To develop an experimental model of abdominal aorta transplantation with nano-biomimetictissue engineered blood vessel (NBTEBV) and to investige the change of histomorphology in evolutionary process of degradation and remodel ing. Methods Twenty 6-month-old New Zealand rabbits were included, weighing 2-3 kg, male or female. The autologous seed cells of rabbits were harvested to build NBTEBV in vitro. After the branch of abdominal aorta under kidney was l igated, about 10 mm abdominal aorta was cut and replaced by NBTEBV; the anastomotic stoma was marked by Ti cl ips. NBTEBV’s evolutionary processes of degradation and rebuilding were observed. Twelve weeks after operation, DSA and color Doppler examinations were made. At 1, 4 and 12 weeks after operation, the gross and histological observations were made and 14C binding in PLGA was detected with X-ray photon spectroscopy. Results Of 20 rabbits, 17 showed that the NBTEBV was patency; 3 died from NBTEBV occlusion 36 or 72 hours after operation. The results of DAS and color Doppler showed the blood flow was patency, the blood flow rate was normal and there was no angiectasis. The lumen of transplanted blood vessel was covered with monolayer endothel ial cells. At 1 week, smooth muscle cells (SMCs) arranged regularly and much PLGA distributed in the EMCs. At 4 weeks, SMCs arranged in a layer, ECM was forming, mimic ECM degraded partly; PLGA decreased obviously. At 12 weeks, the SMCs arranged regularly, ECM formed, mimic ECM degraded, no PLGA was seen in the wall, the shape of graft was similar to the natural vessel. The decreasing crest value of 14C in specimen showed the degradation of PLGA. Conclusion NBTEBV has a good surgical maneuverabil ity and histocompatibil ity, its remodel ing evolutionary process fits in with tissue engineering specification. Building NBTEBV with ELSP is feasible.