Severely coagulated retinae by argon laser of 20 Chinese hamsters were investigated with transmission electron-microscopy. The results revealed destruction of retinal pigment epithelium-Bruch's membrane-choroid capillary complex at the coagulated foci, and leakage of fluid and blood cells through the choroidal vessels into the subretinal space. Several days after laser burn the subretinal fluid was found to subside and the RPE cells surrounding the burned lesions started to proliferate. The smaller lesions were covered by the proliferating RPE 10 days after coagulation, but poor regeneration of RPE in large necrotic areas. Neovascularization was usually associated with obvious defect of Bruch's membrane and restoration of RPE barrier was most likely impossible. (Chin J Ocul Fundus Dis,1992,8:14-16)
Objective To study the relationship between the expression of sonic hedgehog (Shh) and vascular endothelial growth factor (VEGF) in hypoxic human retinal pigment epithelial (hRPE) cells. Methods Cultured hRPE-19 cells (3rd - 6th generations) were used in this experiment. hRPE-19 cells were divided into three groups including the control group, the hypoxia experimental group (100 μmol/L CoCl2) and the inhibition group (pretreatment with 20 μmol/L cyclopamine 1 hour before hypoxia). After culturing for 4, 8, 12 and 24 hours, the mRNA level of Shh and VEGF genes in these cells were measured by fluorescence quantitative polymerase chain reaction, and the protein level of Shh and VEGF in the supernatants were measure by enzyme-linked immunosorbent assay. The relationship between the expression of Shh and VEGF was analyzed by Pearson correlation analysis. Results The control group expressed low levels of Shh and VEGF mRNA/protein. The expression of Shh and VEGF mRNA/protein in the hypoxia experimental group was significantly higher than that in the control group (F=178.364, 183.732, 77.456, 91.572; P<0.01). The expression of Shh and VEGF mRNA in the inhibition group was significantly lower than that in the hypoxia experimental group (F=68.745, 121.834; P<0.01). In the hypoxia experimental group, the expression of VEGF protein was positively correlated with the expression of Shh protein (r=0.942, P<0.05); and the expression of VEGF and Shh mRNA was positively correlated (r=0.970, P<0.01). However, there was no significant correlation in the expression of VEGF and Shh mRNA in the inhibition group (r=0.915, P>0.05). Conclusion There is a positive correlation between the expression of Shh and VEGF in hypoxic hRPE cells.
ObjectiveTo investigate the role of sonic hedgehog (Shh) signal transduction pathway in the expression of vascular endothelial growth factor (VEGF) under hypoxia in cultured human retinal pigment epithelial (hRPE) cells. MethodsARPE-19 were cultured and divided into normal ARPE-19 (Cont) and hypoxia group (100 μmol/L CoCl2 Cobalt Chloride +ARPE-19); hypoxia group was further divided into CoCl2 group, cyclopamine group (CYA) and dimethyl sulfoxide (DMSO) group. 20μmol/L cyclopamine was added to the CYA group 1 hour before hypoxia, 1‰DMSO was added into DMSO group at the same time. The hRPE cells were cultured under hypoxia for 4, 8, 12, 24 hours. The expression of Shh and VEGF were determined by Real-time fluorescent quantitate PCR (RT-PCR). The amount of VEGF in the hRPE-conditioned supernatant was measured using enzyme linked immunosorbent assay (ELISA) at 4, 8, 12, 24 hours, respectively. ResultsRT-PCR tests showed that the level of Shh and VEGF of hRPE was time dependently increased (Shh: F=45.260, P=0.001; VEGF: F=264.938, P=0.001). The level of Shh and VEGF of hRPE in the group treated with cyclopamine was decreased (P < 0.01). ELISA tests showed that the amount of VEGF in hRPE supernatant was significantly increased in time-dependent manner (F=3 156.676, P=0.001), and it was down-regulated by cyclopamine under hypoxia (P < 0.01). ConclusionShh signal transduction pathway could play a role in the VEGF expression induced by hypoxia in hRPE cells.
ObjectiveTo observe the expressions of miR-183 and retinal dehydrogenase 11 (RDH11) in exosomes derived from bone marrow mesenchymal stem cells (BMSC), and to preliminarily explore their targeting relationship and their effects on retinal pigment epithelial (RPE) cells. MethodsBMSC from C57BL/6 (C57) mice were isolated and cultured, and BMSC-derived exosomes were identified. BMSC were divided into blank group, simulation blank control group (mimic-NC group), miR-183 simulation group (miR-183-mimic group). C57 mice and retinal degeneration 10 (rd10) mouse RPE cells were cultured with reference to literature methods. RPE cells from rd10 mice were transfected with BMSC exosomes and co-cultured and divided into control group, exosome group, mimic-NC-exosome group (mimic-NC-exo group), miR-183-mimic-exosome group (miR-183-mimic-exo group). The relative expression levels of miR-183, RDH11 mRNA and protein in C57 mice, rd10 mice and RPE cells in each group were detected by real-time quantitative polymerase chain reaction and western blotting. The targeting relationship between miR-183 and RDH11 was analyzed by bioinformatics website and dual luciferase reporter. Cell counting kit 8 was used to detect the effect of miR-183 on BMSC exosomes on RPE cell proliferation; in situ labeling end labeling method was used to detect RPE cells apoptosis. One-way ANOVA was used to compare multiple groups. ResultsCompared with C57 mouse RPE cells, the relative expression of miR-183 in rd10 mouse RPE cells was down-regulated, and the relative expression of RDH11 mRNA was up-regulated, and the differences were statistically significant (t=5.230, 8.548; P=0.006, 0.001). Compared with the blank group and the mimic-NC group, the relative expression of miR-183 mRNA in the exosomes of the miR-183-mimics group was significantly increased (F=60.130, P<0.05). After 24 h of co-culture, exosomes entered RPE cells. Compared with the mimic-NC-exo group, the relative expression of miR-183 mRNA in RPE cells in the miR-183-mimic-exo group was significantly increased, the proliferation ability was enhanced (t=7.311, P=0.002), and the number of apoptotic cells was decreased (F=10.949, P=0.012), and the differences were statistically significant (t=4.571, P=0.002). Bioinformatics website and dual-luciferase report confirmed that miR-183 has a targeting relationship with RDH11. Compared with the mimic-NC group, the relative expression of RDH11 mRNA and protein in the exosomes of the miR-183-mimic group was decreased, and the difference was statistically significant (t=5.361, 6.591; P=0.006, 0.003). After co-culture, compared with the control group, there was no significant difference in the relative expression of RDH11 mRNA and protein in RPE cells in the exosome group (t=0.169, 1.134; P=0.874, 0.320); The relative expressions of RDH11 mRNA and protein in RPE cells in -183-mimic-exo group were decreased, and the difference was statistically significant (t=5.554, 5.546; P=0.005, 0.005). ConclusionUp-regulation of BMSC-derived exosomal miR-183 promote the proliferation of RPE cells in vitro by targeting the expression of RDH11 and reduce the number of apoptosis.
ObjectiveTo investigate the effect of blue light on Ca2+-protein kinase C (PKC) signaling pathway in human retinal pigment epithelial (RPE) cells in vitro. MethodsPrimary human RPE cells were cultured in vitro and characterized. The experiments were carried out using the 4th generation of human RPE cells. The PKC protein level was measured by Western blot to determine the most appropriate concentration of phorbol ester (PMA) and calcium phosphate binding protein (calphostin C) on PKC expression. Non-radioactive isotope method was used to determine the effect of blue light on PKC expression of cultured cells. Blue-light damage model of human RPE cells was established by 6 hour irradiation of medical blue-light lamp [20 W, 450-500 nm wavelength, (2000±500) Lux], and 24 hours prolongation of post-exposure culture. The human RPE cells were randomly divided into 5 groups. Group A did not receive light irradiation, group B only received blue light irradiation, group C was blue light irradiation and 0.1 mmol/L nifedipine treatment, group D was blue light irradiation and 100.0 nmol/L calphostin C treatment, group E was blue light irradiation and 100.0 nmol/L PMA treatment. Intracellular Ca2+ concentration was measured by acetoxymethyl ester (Fluo 3-AM) labelling and confocal microscope imaging. ResultsThe PKC protein expression in 100.0 nmol/L or 200.0 nmol/L PMA-treated groups was higher than 0.1, 1.0, 10.0, and 50.0 nmol/L PMA-treated groups, the difference was statistically significant (F=217.537, P<0.05), but there was no statistically difference between 100.0 nmol/L and 200.0 nmol/L PMA-treated groups (P=0.072). The PKC protein expression in 100.0 nmol/L or 200.0 nmol/L calphostin C-treated groups was lower than 5.0, 25.0, 50.0, and 75.0 nmol/L calphostin C-treated groups, the difference was statistically significant (F=164.543, P<0.05), but there was no statistically difference between 100.0 nmol/L and 200.0 nmol/L calphostin C-treated groups (P=0.385). PKC level in blue light group was higher than non-light group, the difference was statistically significant (t=-9.869, P<0.05). The Ca2+ fluorescence intensity values in group B, C, D and E was higher than group A, the difference was statistically significant (F=26 764.92,P<0.05). The Ca2+ fluorescence intensity values in group E was higher than group B, C and D (P<0.05), and that in group B was higher than group C and D (P<0.05). ConclusionsThe PKC activity and intracellular Ca2+ concentration in human RPE cells increase after blue-light irradiation. Both calcium channel inhibitor nifedipine and PKC inhibitor calphostin C can reduce intracellular Ca2+ concentration in human RPE cells. PMA can induce intracellular Ca2+ concentration in human RPE cells after blue light irradiation.
RCBTB1 gene associated hereditary retinopathy is an extremely rare inherited retinal disease (IRD) discovered recently. The mutation of RCBTB1 gene can lead to a variety of IRD clinical phenotypes, such as early retinitis pigmentosa and delayed chorioretinal atrophy. The hereditary mode of RCBTB1 gene associated retinopathy is autosomal recessive. RCBTB1 gene plays an important role in maintaining mitochondrial function and anti-oxidative stress defense mechanism of retinal pigment epithelium cells. In the future, it is necessary to further determine whether there is a genotypic and phenotypic correlation in the age of onset of RCBTB1 gene associated retinopathy or multi-organ involvement, and evaluate the safety and efficacy of adeno-associated virus-mediated RCBTB1 gene replacement therapy in animal models, to explore the feasibility of gene replacement therapy and stem cell therapy.
ObjectiveTo investigate the protective effect of butylphenyphthalein (NBP) on RPE apoptosis induced by H2O2.MethodsThe human RPE cell line (human ARPE-19 cell line) were used as the experimental cells and were divided as control group, model group, NBP group. Complete medium was used in control group. The model group was stimulated with 200 μmol/L H2O2 for 2 h, and the cells were cultured in complete medium. The NBP group was cultured with 200 μmol/L H2O2 and 1 μmol/L NBP for 2 h. After changing the medium, complete medium was combined with 1 μmol/L NBP to continue the culture of the cells. Cell viability were detected by MTT assay while the morphology of RPE were observed by HE staining. Moreover, Hoechst 33258 was used to detect RPE cell apoptosis. Mitochondrial membrane potential (JC-1) staining were performed to monitor changes in cell membrane potential and the characteristic change of apoptosis in RPE cells. Furthermore, 2′,7′-Dichlorofluorescin diacetate (DCFH-DA) staining were used to analyze the effect of NBP treatment on the expression of ROS. The effect of NBP on the expression of Heme oxygenase-1(HO-1) was analyzed by cellular immunofluorescence and western blotting.ResultsThe results of MTT assay showed that the cells were cultured for 24 and 48 hours, cell viability of control group (t=17.710, 13.760; P<0.000 1, <0.000 1) and treatment group (t=4.857, 9.225; P=0.000 7, <0.000 1) were stronger than that of model group, and the difference was statistically significant. HE staining and Hoechst33258 staining showed that compared with the control group, the number of cells in the model group was significantly less, and the cell morphology was incomplete. Compared with the model group, the number of cells in the treatment group was significantly increased, and the cell morphology was better. The results of JC-1 assay showed that the number of apoptotic cells in the model group was significantly higher than that in the control group, and the number of apoptotic cells in the treatment group was significantly lower than that in the model group. DCFH-DA staining showed that the ROS accumulation in the model group was more than that in the control group, and the ROS accumulation in the treatment group was less than that in the model group. Immunostaining observation showed that the HO-1 fluorescence intensity of the cells in the treatment group was significantly higher than that of the control group, and the difference was statistically significant (t=10.270, P=0.000 5). Western blot analysis showed that NBP up-regulated the expression level of HO-1 in a time-dependent manner. The relative expression of HO-1 at 4, 8, and 12 h of NBP showed a clear increase trend compared with 0 h, and the difference was statistically significant (F=164.91, P<0.05).ConclusionsOxidative stress injury can down-regulate the viability of RPE cells and induce apoptosis. NBP can increase the antioxidant capacity of RPE cells, reduce cell damage and inhibit cell apoptosis by up-regulating HO-1 expression.
ObjectiveTo observe the effect of subretinal injection of retinal pigment epithelium (RPE) cells for RPE in mice. MethodsA total of 30 postnatal day 7 C57BL/6J mice were randomly divided into normal mice group, OIR model group and OIR model cell transplanted group, 10 mice in each group. The OIR model was induced in mice of OIR model group and OIR model cell transplanted group. The RPE cells were subretinal injected into the RPE of mice in OIR model cell transplanted group. At 20 days after the injection, the RPE thickness was evaluated by fluorescence microscope. The expression of RPE65, Bestrophin and zonula occludens-1 (ZO-1) were estimated by Western blot and real-time quantitative PCR (RT-PCR). ResultsThe thickness of RPE in OIR model mice was thinner than that in normal mice; the thickness of RPE in OIR model cell transplantation mice was significantly thicker than that in the OIR model mice. The results of Western blot and RT-PCR indicated that the differences of protein (F=8.597, 18.864, 25.691) and mRNA expression (F=39.458, 11.461, 34.796) of RPE65, Bestrophin, ZO-1 were statistically significant between OIR model group and OIR model cell transplanted group (P < 0.05). ConclusionsSubretinal injection of RPE cells can promote RPE thickening. RPE65 and Bestrophin protein relative expression levels increased, ZO-1 protein relative expression levels reduced; mRNA expression levels of RPE65, Bestrophin and ZO-1 genes increased.
ObjectiveTo observe the expression of hot shock protein 47 (HSP47) in pre-retinal membrane of proliferative vitreoretinopathy (PVR) and the influence of transforming growth factor-β2 (TGF-β2) on the expression of HSP47 in retinal pigment epithelial (RPE) cell. MethodsPre-retinal membranes were collected and observed by hematoxylin-eosin, Masson and immunohistochemical staining. Cultured ARPE-19 cells were treated with TGF-β2 at serial concentration (0, 1, 5, 10 ng/ml) and time (0, 12, 24, 48 hours), respectively. And then the mRNA and protein expressions of HSP47 and Col-Ⅰ were measured by fluorescence quantitative reverse transcription polymerase chain reaction and Western blot at the same time. ResultsA lot of epithelial cells with pigmental particles were observed in pre-retinal membranes of PVR, much accumulated collagen protein was observed in the specimens, and HSP47 positive expression was bserved in cytoplasm and stroma of most of the epithelioid cells. Compared with 0 ng/ml group, the expressions of HSP47 mRNA in ARPE-19 were up-regulated by 1.32, 2.35, 1.85 fold, significant differences were observed in all groups (F=27.21, P<0.05); the expressions of protein were up-regulated by 2.33, 2.89, 2.60 fold, significant differences were observed in all groups (F=39.78, P<0.05). The expressions of Col-Ⅰ mRNA were up-regulated by 1.29, 1.52, 2.11 fold, significant differences were observed in all groups (F=23.45, P<0.05); the expressions of protein were up-regulated by 1.18, 1.49, 2.11 fold and significant differences were observed in all groups (F=29.10, P<0.05). Compared with 0 hour group, the expressions of HSP47 mRNA were up-regulated by 1.56, 1.84, 2.86 fold in ARPE-19 cells stimulated by 5 ng/ml TGF-β2 for 12, 24 and 48 hours, and the differences were all significant (F=31.56, P<0.05); the expressions of protein were up-regulated by 2.08, 2.37, 2.80 fold, and the differences were all significant (F=49.18, P<0.05). The expressions of Col-Ⅰ mRNA were up-regulated by 1.57, 1.86, 2.78 fold and the differences were all significant (F=54.43, P<0.05), the expressions of protein were up-regulated by 1.38, 1.59, 2.16 fold and the differences were all significant (F=42.52, P<0.05). ConclusionTGF-β2 may play a role in the pathologic process of PVR by promoting the expression of HSP47 and then increasing the synthesis and accumulation of Col-Ⅰ.
ObjectiveTo observe the regulation of PTB-associated splicing factor (PSF) exerts on phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway in cultured retinal pigment epithelial (RPE) cells. MethodsARPE-19 RPE cells were divided into five groups including PSF overexpression (0.25, 0.50, 1.00 μg of pEGFP-C2-PSF plasmid DNA), PSF overexpression control (pEGFP-C2 empty vector DNA), PSF inhibition (0.25, 0.50, 1.00 μg of pGenesil-PSF-RNAi plasmid DNA), PSF inhibition control (pGenesil-scramble-siRNA empty vector) and sham transfected group (treated with lipofactamine 2000 reagent, but without adding plasmid DNA) groups. After transfecting with plasmid DNA, the cells were stimulated with insulin-like growth factor-1 (IGF-1). IGF-1-stimulated ARPE-19 cells were also treated with Wortmannin and /or PSF over-expression. WST-1 assay was used to detect the proliferation rates, the VEGF mRNA levels were analyzed using real time polymerase chain reaction (PCR), the levels of phosphorylation Akt and total Akt expression were measured by western blotting. ResultsAfter IGF-1 stimulation, the difference of the cell proliferation rates between PSF overexpression group, PSF overexpression control group and sham transfected group was statistically significant (F=29.728, P<0.05). The difference of the cell proliferation rates between PSF inhibition group, PSF inhibition control group and sham transfected was also statistically significant (F=14.121, P<0.05). Compared with control group, the VEGF mRNA levels was decreased in PSF overexpression group (P=0.000 3), but increased in PSF low expression group (P=0.030 9). Furthermore, overexpression of PSF could down-regulate the activation of pAkt after IGF-1 stimulation. When combined with Wortmannin treatment, the VEGF mRNA levels in PSF overexpression group was significantly lower than the control group (P<0.05). ConclusionsAfter IGF-1 treatment, PSF plays a role in suppressing the proliferation and VEGF expression in RPE cells by inactivating PI3K/Akt signaling pathway.