Retinal vein occlusion (RVO) is a vascular disease characterized by intraretinal hemorrhage, edema and hard exudation, which is caused by increased retinal vein pressure. OCT angiography (OCTA) has been widely used in the diagnosis of retinal vascular diseases including RVO by virtue of non-invasive, high resolution and stratified display of superficial, deep retinal vessels and quantification of retinal vessel density and non-perfusion area size. OCTA can provide information of retinal microvascular structure and blood perfusion under the condition of disease, it also can be used to evaluate the effect of treatment and changes of retinal circulation during the course of disease follow-up. Although OCTA cannot replace fundus angiography completely, it has brought us more information about the pathogenesis, disease progression and prognostic factors of RVO. It is believed that with the progress of technology, OCTA will bring us a new chapter in the study of retinal vascular diseases including RVO.
Purpose To evaluate the significance of axial length in case of branch retinal vein occlusion(BRVO). Methods A case-control study of axial length was performed using 34 patients with BRVO and 34 age and sex-matched control patients selected from a list of subjects who had undergone cataract extraction.Axial length measurement were taken with an A-scan ultrasonography. Results The affected and fellow eye in patinets of BRVO group did not differ statistically in axial length (P>0.20).The mean axial length of affected eyes in BRVO group was (23.16plusmn;0.82)mm, and the mean axial length of control eyes was(23.78plusmn;1.06)mm.The difference in axial length between the eyes with BRVO and the eyes in the control group was not statistically significant(P>0.10). Conclusion Hyperopia as measured by axial length is not a risk factor to BRVO. (Chin J Ocul Fundus Dis,1998,14:12-13)
Objective To study and compare the clinical efficacy between intravitreal conbercept injection and (or) macular grid pattern photocoagulation in treating macular edema secondary to non-ischemic branch retinal vein occlusion (BRVO). Methods Ninety eyes of 90 patients diagnosed as macular edema secondary to non-ischemic BRVO were enrolled in this study. Forty-eight patients (48 eyes) were male and 42 patients (42 eyes) were female. The average age was (51.25±12.24) years and the course was 5–17 days. All patients were given best corrected visual acuity (BCVA), intraocular pressure, slit lamp with preset lens, fluorescence fundus angiography (FFA) and optic coherent tomography (OCT) examination. The patients were divided into conbercept and laser group (group Ⅰ), laser group (group Ⅱ) and conbercept group (group Ⅲ), with 30 eyes in each group. The BCVA and central macular thickness (CMT) in the three groups at baseline were statistically no difference (F=0.072, 0.286;P=0.930, 0.752). Patients in group Ⅰ received intravitreal injection of 0.05 ml of 10.00 mg/ml conbercept solution (conbercept 0.5 mg), and macular grid pattern photocoagulation 3 days later. Group Ⅱ patients were given macular grid pattern photocoagulation. Times of injection between group Ⅰ and Ⅲ, laser energy between group Ⅰ and Ⅱ, changes of BCVA and CMT among 3 groups at 1 week, 1 month, 3 months and 6 months after treatment were compared. Results Patients in group Ⅰ and Ⅲ had received conbercept injections (1.20±0.41) and (2.23±1.04) times respectively, and 6 eyes (group Ⅰ) and 22 eyes (group Ⅲ) received 2-4 times re-injections. The difference of injection times between two groups was significant (P<0.001). Patients in group Ⅱ had received photocoagulation (1.43±0.63) times, 9 eyes had received twice photocoagulation and 2 eyes had received 3 times of photocoagulation. The average laser energy was (96.05±2.34) μV in group Ⅰ and (117.41±6.85) μV in group Ⅱ, the difference was statistical significant (P=0.003). BCVA improved in all three groups at last follow-up. However, the final visual acuity in group Ⅰ and group Ⅲ were better than in group Ⅱ (t=4.607, –4.603;P<0.001) and there is no statistical significant difference between group Ⅲ and group Ⅰ (t=–0.802,P=0.429). The mean CMT reduced in all three groups after treating for 1 week and 1 month, comparing that before treatment (t=–11.855, –10.620, –10.254;P<0.001). There was no statistical difference of CMT between group Ⅰand Ⅲ at each follow up (t=0.404, 1.723, –1.819, –1.755;P=0.689, 0.096, 0.079, 0.900). CMT reduction in group Ⅰ was more than that in group Ⅱ at 1 week and 1 month after treatments (t=–4.621, –3.230;P<0.001, 0.003). The CMT in group Ⅲ at 3 month after treatment had increased slightly comparing that at 1 month, but the difference was not statistically significant (t=1.995,P=0.056). All patients had no treatment-related complications, such as endophthalmitis, rubeosis iridis and retinal detachment. Conclusions Intravitreal conbercept injection combined with macular grid pattern photocoagulation is better than macular grid pattern photocoagulation alone in treating macular edema secondary to non-ischemic BRVO. Combined therapy also reduced injection times comparing to treatment using conbercept injection without laser photocoagulation.
PURPOSE:To investigate the relationship between the development of the diabetic retinopathy(DR)and the changes of ocular hemodynamics. METHODS:The hemodynamic parameters (Vmax,Vmin,RI)of central relinal artery(CRA )and central retinal vein(CRV)were measured both in the diabetes mellitus(DM) group(72 cases)and the control group(28 cases)with color Doppler flow imaging(Acuson-128XP/10). RESULT:The hemodynamic changes in CRA and CRV in the different stages of DR had their own characteristicS. The blood flow in CRA of the DM patients without DR was higher than that of the control (Plt;0.05). With tile deterioration of the retinopathy the blood flow in CRA decreased. The velocity of the blood flow in CRA of the proliferative DR group was less than that in the control ,DM without DR patients and background DR patients(Plt;0.05). The velocity of the flow in CRV of the DM patients was higher than that of control (Plt;0.001 )and exhibited its remarkable pulsative pattern. CONCLUSIONS:The changes of the hemodynamics in CRA.CRV was associated with the development of the diabetic retinopathy. (Chin J Ocul Fundus Dis,1997,13: 210-212 )
Objective To set up a new animal model of branch retinal vein occlusion (BRVO), which was quite similar to the clinical features and pathogenesis of this disease. Methods The animal model was set up by laser (krypton green 90 ~150 mW) irradiating a branch of central retinal vein after intravenous injection of photochemical drug (3% rose bengal) to 5 pigmented rabbits, and the model was confirmed by fundus fluorescein angiography (FFA) and pathological examination. Results The model of BRVO was successfully set up, which was confirmed by clinical examination and FFA. Pathological examination showed that the occlusion was caused by intra-venousthrombosis. Conclusion An experimental BRVO model, which has the similar pathological processes of occlusion of central retinal vein and intra-venous thrombosis as those in clinic can be set up by using photochemical method. The method is quite simple, and it offers a better animal model for clinical therapeutic research. (Chin J Ocul Fundus Dis,2002,18:23-25)
PURPOSE:To investigate the content of vascular endothelial growth factor (VEGF)in vitreous of patients with retinal vascula'r proliferative diseases. METHODS:The concentration of VEGF in undiluted vitreous samples from patients with retina vein occlusion (RVO) (n=7),Eales disease (n=7)and controls (n=7) was measured by enzyme linked immunosorbent assay (EL1SA). RESULTS:The levels of vitreous VEGF were significantly higher 13 folds in patients with RVO(4.67plusmn;3.38)ng/ml and 5 folds in patients with Eales disease(1.79plusmn;0.44)ng/ml than in controls (0.35plusmn;0.15)ng/ml separately(P<0. 01). CONCLUSIONS:VEGF might play a part in mediating the neovascularization of retinal vascular diseases. (Chin J Ocul Fundus Dis,1997,13:171-173)
Objective To observe the changes of photopic negative response (PhNR) of electroretinography (ERG) in patients with retinal vein occlusion (RVO). Methods A total of 30 patients (30 eyes) with retinal vein occlusion (RVO) diagnosed by indirect ophthalmoscopy and fundus fluorescein angiography (FFA) were selected; the unaffected fellow eyes of the patients and another 25 healthy agematched individuals (50 eyes) were cllected as the normal control. All of the patients underwent the examination of visual acuity, visual field, and flashERG (FERG); the normal control ones underwent FERG. In the 30 patients with RVO, there were 14 with central RVO (CRVO) and 16 with branch RVO (BRVO). According to the disease history and results of FFA, the patients were divided into 3 time groups: lt;1 month, 1-3 months, and gt;3 months; according to the types of RVO, the patients were divided into ischemic and nonischemic group. The amplitude of PhNR and other parameters were analysed. The relationship among the amplitude of PhNR and RVO types and time course were analyzed.Results The amplitude of PhNR in the CRVO and BRVO eyes was (28.20plusmn;5.8) and (36.96plusmn;4.71) mu;V, respectively; those in the unaffected fellow and control eyes was (61.25plusmn;3.93) and (59.33plusmn;16.92) mu;V, respectively; the amplitude of PhNR was significantly smaller in the CRVO and BRVO eyes than those in the unaffected fellow or control eyes (F=10.69 and 9.80,P<0.001; F=9.69 and 9.75,P<0.001). The amplitude of PhNR in ischemic and nonischemic group in CRVO eyes was (22.77plusmn;15.73) and (36.63plusmn;12.91) mu;V, respectively; the difference between the two groups was significant(t=6.54, Plt;0.01). The amplitude of PhNR in ischemic and nonischemic group in BRVO eyes was (32.39plusmn;13.22) and (46.73plusmn;10.43) mu;V, respectively; there was no significant difference between the two groups(t=2.12, Plt;0.05). The amplitude of PhNR was (24.58plusmn;14.60) and (27.94plusmn;15.73) mu;V, respectively, in CRVO and BRVO eyes with lt; 1 month disease course; was (50.39plusmn;13.80) and (58.69plusmn;12.43) mu;V in those with 1-3 months disease course; and was (25.40plusmn;19.94) and (34.48plusmn;16.72) mu;V in those with >3 months diseases course. Significant difference was found between the 1-3 months group and >3 months group in CRVO eyes(F=4.30,Plt;0.01). Conclusions The amplitude of PhNRs was significantly smaller in RVO eyes than those in the unaffected fellow or control eyes.The amplitude of PhNR amplitude of ischemic type was smaller than that of nonischemic type. The amplitude of PhNR has descending,ascending,and descending tendency during the disease courses.
Objective To investigate the efficacy and the safety of external therapy of ultrasound (ETUS) enhancing thrombolysis on the experimental retinal vein occlusion. Methods The effect of ETUS enhanced thrombolysis and the impact of ultrasound energy and exposure were investigated respectively after both eyes of 51 rabbits with retinal branch vein occlusion created by photodynamic initiated thrombosis were divided into 4 groups. The first 2 groups are the ETUS groups, including one group (15 rabbits) underwent intravenous injection with urokinase (UK) (1700-2200 UK dissolved into 20 ml normal saline), and other group (12 rabbits) underwent intravenous injection with normal saline. In these 2 groups, each rabbit received ETUS treatment (1.0 W/cm2, 20 min) in one eye and the fellow eye did not which was as the control. The latter 2 groups are the energy and duration of ultrasound groups, and 12 rabbits in each group underwent ETUS with the energy of 0.7 and 1.0 W/cm2 respectively. Each of the 2 groups was divided into 3 subgroups (8 rabbits in each) according to the radiated durations (8, 14, and 20 minutes). All of the eyes except the control ones underwent ETUS with 1 MHz ultrasound and 100 Hz pulsed ultrasound once a day for 3 days. Fundus fluorescein angiography (FFA) was used to detect the vascular condition 4 days after ETUS, and at the 15th day, retinal light microscopy and electron microscopy were performed. Results The vascular recanalization rate in ETUS+UK treatment group was 66.7%, which is obviously higher than which in single UK group (20.0%, P=0.025), normal saline group (8.3%, P=0.005), and ETUS+ normal saline group (8.3%, P=0.005). The vascular recanalization rates in groups with different energy of ultrasound increased obviously as the radiated durations increased (P=0.006, 0.001), while no apparent effect of energy of ultrasound on the vascular recanalization rate was found in the groups with different radiated duration (Pgt;0.05). The eyes which had undergone ETUS treatment had retinal tissue damage and ultrastructure changes of the retinal ganglion cells (RGC), and deteriorated as the radiated duration increased. Conclusion ETUS may enhance the thrombolysis induced by urokinase in experimental retinal vein occlusion. Simultaneously, ETUS can lead to the damage of retinal tissue and changes of the ultrastructure of RGC. (Chin J Ocul Fundus Dis, 2007, 23: 166-169)
ObjectiveTo observe the short-term efficacy of posterior sub-tenon injection of triamcinolone acetonide (PSTA) in the treatment of macular edema due to ischemic retinal vein occlusions (RVO). MethodsA retrospective clinical study. A total of 53 eyes of 53 patients with RVO macular edema diagnosed by fundus color photography, fundus fluorescein angiography and optical coherence tomography (OCT) were included in the study. The best corrected visual acuity (BCVA) was detected by the international standard visual acuity chart, and the results were converted to the logarithm of the minimum angle of resolution (logMAR) visual acuity. The central macular thickness (CMT) was measured by OCT. Among 53 eyes, there were 27 eyes with ischemic RVO macular edema (ischemic group) and 26 eyes with non-ischemic RVO macular edema (non-ischemic group). The mean logMAR BCVA was 0.82±0.37, mean CMT was (662.1±216.7) μm in ischemic group. The mean logMAR BCVA was 0.41±0.23, mean CMT was (548.0±161.9) μm. The differences of logMAR BCVA and CMT between the two groups were both statistically significant (t=4.745, 2.258; P<0.05). All eyes were treated with a single sub-Tenon injection of 0.4 ml triamcinolone acetonide suspension (100 mg/ml).The mean logMAR BCVA, CMT before and 1, 3 months after the treatment between the two groups were observed and compared. ResultsOn 1 and 3 months after treatment, the mean logMAR BCVA in the non-ischemic group (0.32±0.25 and 0.27±0.29) were improved compared with ischemic group (0.76±0.37 and 0.41±0.79), the difference was statistically significant (t=5.052, 5.240; P<0.05). The mean logMAR BCVA before and after treatment had no statistically significant difference in ischemic group (F=0.516, P>0.05), but had a statistically significant difference in non-ischemic group (F=7.685, P<0.05). On 1 and 3 months after treatment, the mean CMT in the ischemic group were (534.7±223.4), (470.8±234.7) μm, which were lower (127.4±28.28), (191.4±34.55) μm before treatment. In the non-ischemic group, the average CMT was (426.2±188.8), (371.3±200.6) μm, which were lower (103.1±33.1), (164.9±49.6) μm. There were statistically significant differences in the mean CMT between the ischemic group and the non-ischemic group (F=17.040, 10.360; P<0.05). In non-ischemic group, CMT had a bigger reduction compared to the the ischemic group (t=2.056, 2.103; P<0.05). The difference of CMT decrease value between two groups was not statistically significant (t=0.560, 0.441; P>0.05). On 1 month after the treatment, there were 3 and 5 eyes had a higher intraocular pressure than 21 mmHg (1 mmHg=0.133 kPa) in ischemic and non-ischemic group, respectively; but all of them returned to normal after drug treatment. There were no drugs and ocular injection related complications. ConclusionPSTA of ischemic RVO macular edema can lower the CMT in the short term, but can't significant improve the visual acuity.
ObjectiveTo observe the changes of macular microvascular structure in eyes with macular edema secondary to branch retinal vein occlusion (BRVO-ME) after intravitreal injection of conbercept and analyze its relationship with visual function and central retinal thickness (CRT).MethodsA prospective clinical study. From July 2018 to June 2019, 21 eyes of 21 patients with unilateral temporal BRVO-ME diagnosed in the Department of Ophthalmology of Peking Union Medical College Hospital were included in the study. Among them, there were 14 eyes of 14 males and 7 eyes of 7 females; the average age was 58.0±8.3 years. There were 13 eyes and 8 eyes with occlusion of the superior temporal and inferior temporal branches of the retinal vein, respectively. The affected area was defined as the side of the venous obstruction. All the affected eyes underwent best-corrected visual acuity (BCVA) and optical coherence tomography angiography (OCTA) examination. The BCVA was tested using the international standard logarithmic visual acuity chart, which was converted into the logarithmic minimum angle of resolution (logMAR) visual acuity during statistical analysis. All the eyes were treated with intravitreal injection of conbercept once a month for 3 months, and then treated as needed. A 3 mm × 3 mm scan centered on fovea was obtained and the vascular density of superficial capillary plexus (SCP) and deep capillary plexus (DCP), fovea avascular zone (FAZ) area, perimeter of FAZ (PERIM), acircularity index (AI), foveal vascular density in a 300 μm wide region around FAZ (FD-300) and central retinal thickness (CRT) were measured. The follow-up time after treatment was 6 months. The vascular density and FAZ parameters were compared before and after treatment by paired t test. The correlations of BCVA, CRT and vascular density, FAZ area and the other parameters at 6 months after treatment were analyzed by linear regression analysis. ResultsBefore treatment, the logMAR BCVA of the eyes was 0.506±0.159, and the CRT was 375.4±81.3 μm; 6 months after treatment, the logMAR BCVA of the eyes was 0.294±0.097, and the CRT was 266.3±46.7 μm. There was a statistically significant difference of logMAR BCVA and CRT between the eyes before and after treatment (t=8.503, 9.843; P<0.05). There was no statistically significant difference in the overall vascular density of SCP and DCP before and 6 months after treatment (t=-0.091, -0.320; P>0.05). The foveal vascular density decreased, and the difference was statistically significant (t=8.801, 3.936; P<0.05). The vascular density of DCP of the affected area increased, and the difference was statistically significant (t=-2.198, P<0.05). Compared with those before treatment, the FAZ area and PERIM of the affected eyes had an increasing trend, while AI and FD-300 had a decreasing trend, and the differences were statistically significant (t=-18.071, -12.835, 2.555, 8.610; P<0.05). The linear regression analysis showed that BCVA and FAZ area 6 months after treatment have significant correlation (t=2.532, P=0.024). ConclusionCRT decreased and BCVA increased after intravitreal injection of conbercept in BRVO-ME eyes. After treatment, the foveal vascular density of SCP and DCP decreased while the vascular density of DCP of the affected area increased. The FAZ increased and the PERIM and AI decreased during follow-up. The BCVA was significantly correlated with the FAZ area 6 months after treatment.