Objective To construct chemically extracted acellular nerve allograft (CEANA) with Schwann cells (SCs) from different tissues and to compare the effect of repairing peripheral nerve defect. Methods Bone marrow mesenchymal stem cells (BMSCs) and adi pose-derived stem cells (ADSCs) were isolated and cultured from 3 4-week-old SD mice with weighing 80-120 g. BMSCs and ADSCs were induced to differentiated MSC (dMSC) and differentiated ADSC (dADSC) in vitro.dMSC and dADSC were identified by p75 protein and gl ial fibrillary acidic protein (GFAP). SCs were isolated and culturedfrom 10 3-day-old SD mice with weighing 6-8 g. CEANA were made from bilateral sciatic nerves of 20 adult Wistar mice with weighing 200-250 g. Forty adult SD mice were made the model of left sciatic nerve defect (15 mm) and divided into 5 groups (n=8 per group) according to CEANA with different sources of SCs: autografting (group A), acellular grafting with SCs (5 × 105) (group B), acellular grafting with dMSCs (5 × 105) (group C), acellular grafting with dADSCs (5 × 105) (group D), and acellular grafting alone (group E). Motor and sensory nerve recovery was assessed by Von Frey and tension of the triceps surae muscle testing 12 weeks after operation. Then wet weight recovery ratio of triceps surae muscles was measured and histomorphometric assessment of nerve grafts was evaluated. Results BMSCs and ADSCs did not express antigens CD34 and CD45, and expressed antigen CD90. BMSCs and ADSC were differentiated into similar morphous of SCs and confirmed by the detection of SCs-specific cellsurface markers. The mean 50% withdrawal threshold in groups A, B, C, D, and E was (13.8 ± 2.3), (15.4 ± 6.5), (16.9 ± 5.3), (16.3 ± 3.5), and (20.0 ± 5.3) g, showing significant difference between group A and group E (P lt; 0.01). The recovery of tension of the triceps surae muscle in groups A, B, C, D, and E was 87.0% ± 9.7%, 70.0% ± 6.6%, 69.0% ± 6.7%, 65.0% ± 9.8%, and 45.0%± 12.1%, showing significant differences between groups A, B, C, D, and group E (P lt; 0.05). No inflammatory reactionexisted around nerve graft. The histological observation indicated that the number of myel inated nerve fiber and the myel in sheath thickness in group E were significantly smaller than that in groups B, C, and D (P lt; 0.01). The fiber diameter of group B was significantly bigger than that of groups C and D (P lt; 0.05) Conclusion CEANA supplementing with dADSC has similar repair effect in peripheral nerve defect to supplementing with dMSC or SCs. dADSC, as an ideal seeding cell in nerve tissue engineering, can be benefit for treatment of peripheral nerve injuries.
ObjectiveTo systemically review the efficacy and safety of Schwann cells (SCs) or activated Schwann cells (ASCs) transplantation in the treatment of traumatic spinal-cord injury (TSCI) in rats models. MethodsRandomized controlled trials (RCTs) about the effects of SCs and ASCs transplantation for TSCI in rats were searched in PubMed, EMbase, The Cochrane Library (Issue 12, 2014), CBM, CNKI, WanFang Data and VIP from inception to December 2014. Two reviewers independently screened literature according to the inclusion and exclusion criteria, extracted data, and assessed the risk of bias of included studies. Then meta-analysis was performed using RevMan 5.3 software. ResultsA total of 14 RCTs involving 510 rats were included. The results of meta-analysis showed that:compared with the control group, the Basso, Beattie and Bresnahan (BBB) scores in the SCs or ASCs transplantation group were superior in 4 weeks (SMD=2.31, 95%CI 1.48 to 3.13, P<0.000 01), 8 weeks (SMD=3.93, 95%CI 3.06 to 4.81, P<0.000 01) and 12 weeks (SMD=6.15, 95%CI 4.30 to 8.00, P<0.000 01) after surgery. The BBB scores in the SCs or ASCs transplantation combined with other therapies group were also better in 4 weeks (SMD=1.06, 95%CI 0.44 to 1.68, P=0.000 8), 8 weeks (SMD=2.26, 95%CI 1.57 to 2.96, P<0.000 01) and 12 weeks (SMD=1.49, 95%CI 0.72 to 2.25, P<0.000 01) after surgery. Compared with the SCs group, the BBB score in the ASCs transplantation group were superior in 4 weeks (SMD=4.31, 95%CI 3.50 to 5.13, P<0.000 01) and 12 weeks (SMD=5.44, 95%CI 3.99 to 6.89, P<0.000 01) after surgery. No significant difference was found in mortality between the transplantation group and the control group. ConclusionCurrent evidence indicates that SCs and ASCs can promote the recovery of motor function in the rats with TSCI. More functional recoveries can be obtained in ASCs transplantation compared with SCs transplantation. Due to limited quality of the included studies, the above conclusion should be verified by conducting more large-scale, high quality RCTs.
Objective To review the research progress on the role of Schwann cells in regulating bone regeneration. MethodsThe domestic and foreign literature about the behavior of Schwann cells related to bone regeneration, multiple tissue repair ability, nutritional effects of their neurotrophic factor network, and their application in bone tissue engineering was extensively reviewed. ResultsAs a critical part of the peripheral nervous system, Schwann cells regulate the expression level of various neurotrophic factors and growth factors through the paracrine effect, and participates in the tissue regeneration and differentiation process of non-neural tissues such as blood vessels and bone, reflecting the nutritional effect of neural-vascular-bone integration. ConclusionTaking full advantage of the multipotent differentiation ability of Schwann cells in nerve, blood vessel, and bone tissue regeneration may provide novel insights for clinical application of tissue engineered bone.
Objective Inducing human amniotic membrane mesenchymal stem cells (hAMSCs) to Schwann cells-like cells (SCs-like cells) in vitro, and to evaluate the efficacy of transplantation of hAMSCs and SCs-like cells on nerves regeneration of the rat flaps. Methods hAMSCs were isolated from placenta via two-step digestion and cultured by using trypsin and collagenase, then identified them by flow cytometry assay and immunofluorescence staining. The 3rd generation of hAMSCs cultured for 6 days were induced to SCs-like cells in vitro; at 19 days after induction, the levels of S-100, p75, and glial fibrillary acidic protein (GFAP) were detected by immunofluorescence staining, Western blot, and real-time fluorescence quantitative PCR (qPCR). The levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were measured by ELISA in the supernatant of the 3rd generation of hAMSCs cultured for 6 days and the hAMSCs induced within 19 days. In addition, 75 female Sprague Dawley rats were taken to establish the rat denervated perforator flap model of the abdominal wall, and were divided into 3 groups (n=25). The 3rd generation of hAMSCs (1×106 cells) in the proliferation period of culturing for 6 days, the SCs-like cells (1×106 cells), and equal volume PBS were injected subcutaneously in the skin flap of the rat in groups A, B, and C, respectively. At 2, 5, 7, 9, and 14 days after transplantation, 5 rats in each group were killed to harvest the flap frozen sections and observe the positive expression of neurofilament heavy polypeptide antibody (NF-01) by immunofluorescence staining. Results The cells were identified as hAMSCs by flow cytometry assay and immunofluorescence staining. The results of immunofluorescence staining, Western blot, qPCR showed that the percentage of positive cells, protein expression, and gene relative expression of S-100, p75, and GFAP in SCs-like cells group were significantly higher than those in hAMSCs group (P<0.05). The results of ELISA demonstrated that the expression of BDNF and NGF was significantly decreased after added induced liquid 1, and the level of BDNF and NGF increased gradually with the induction of liquids 2 and 3, and the concentration of BDNF and NGF was significantly higher than that of hAMSCs group (P<0.05). Immunofluorescence staining showed that the number of regenerated nerve fibers in group B was higher than that in groups A and C after 5-14 days of transplantation. Conclusion The hAMSCs can be induced into SCs-like cells with the proper chemical factor regulation in vitro, and a large number of promoting nerve growth factor were released during the process of differentiation, and nerve regeneration in flaps being transplanted the SCs-like cells was better than that in flaps being transplanted the hAMSCs, which through a large number of BDNF and NGF were released.
Objective To obtain highly purified and large amount of Schwann cells (SCs) by improved primary culture method, to investigate the biocompatibility of small intestinal submucosa (SIS) and SCs, and to make SIS load nerve growth factor (NGF) through co-culture with SCs. Methods Sciatic nerves were isolated from 2-3 days old Sprague Dawley rats and digested with collagenase II and trypsin. SCs were purified by differential adhesion method for 20 minutes and treated with G418 for 48 hours. Then the fibroblasts were further removed by reducing fetal bovine serum to 2.5% in H-DMEM. MTT assay was used to test the proliferation of SCs and the growth curve of SCs was drawn. The purity of SCs was calculated by immunofluorescence staining for S-100. SIS and SCs at passage 3 were co-cultured in vitro. And then the adhesion, proliferation, and differentiation of SCs were investigated by optical microscope and scanning electron microscope (SEM). The NGF content by SCs was also evaluated at 1, 2, 3, 4, 5, and 7 days by ELISA. SCs were removed from SIS by repeated freeze thawing after 3, 5, 7, 10, 13, and 15 days of co-culture. The NGF content in modified SIS was tested by ELISA. Results The purity of SCs was more than 98%. MTT assay showed that the SCs entered the logarithmic growth phase on the 3rd day, and reached the plateau phase on the 7th day. SCs well adhered to the surface of SIS by HE staining and SEM; SCs were fusiform in shape with obvious prominence and the protein granules secreted on cellular surface were also observed. Furthermore, ELISA measurement revealed that, co-culture with SIS, SCs secreted NGF prosperously without significant difference when compared with the control group (P gt; 0.05). The NGF content increased with increasing time. The concentration of NGF released from SIS which were cultured with SCs for 10 days was (414.29 ± 20.87) pg/cm2, while in simple SIS was (4.92 ± 2.06) pg/cm2, showing significant difference (P lt; 0.05). Conclusion A large number of highly purified SCs can be obtained by digestion with collagenase II and trypsin in combination with 20-minute differential adhesion and selection by G418. SIS possesses good biocompatibility with SCs, providing the basis for further study in vivo to fabricate the artificial nerve conduit.
ObjectiveTo review the research advance of differentiation of induced pluripotent stem cells (iPS) into Schwann cells in vitro in recent years. MethodsRelated literatures on differentiation of iPS into Schwann cells in vitro at present were consulted, the induction methods of iPS differentiating into Schwann cells in vitro were summarized, and the differentiated cells were identified and detected. ResultsThe research results indicate that iPS can differentiate into Schwann cells. So far, the iPS have to differentiate into neural crest cells or neural crest stem cells firstly, and then differentiate into Schwann cells. S100-β and glial fibrillary acidic protein (GFAP) are recognized as the marker of Schwann cells. The evidence of generating Schwann cells was that the neural crest cells or neural crest stem cells were labelled by p75+, HNK1+, or nestin+ before differentiation, and by S100-β+ and GFAP+ after induction. ConclusionDespite the increasing reported studies of Schwann cells from iPS, there have been few successful induction methods, so this field of cytology needs further study.
Objective To investigate the survivability of ret inal ganglion cells (RGC) after optic nerve crush with intraocular injection of schwann cells(SC) derived neurotrophic (SCNA) in vivo. Methods Schwann cells of 3~5 day newborn mice were cultured,conditioned media without serum was collected,ultraspeed centrifugalized,and frozen-dry.SD rats were divided into normal contrl,crush control,medium treatment and SCNA treatment groups,and 20 eyes in every group.RGC of adult rats were labelled with flu orogold.Seven days later,the optic nerve was intraorbitally crushed and SCNA was injected into the vitreous on the 5th,7th,21th and 28th day after crush,the number of RGC were counted respectively. Results The densities of RGC began to decrease on the 7th day after injury,the number of RGC was 70.2% and 40.5% of normal controls on the 14th and 28th day,respectively .In the group with SCNA injection,RGC densities decreased on the 7th day,but RGC densities were much higher then that of controls on the 14th,21th,and 28th day after injury (Plt;0.01). Conclusions SCNA administered intraocularly at the time of crush of optic nerve can protect RGC from injury and death of the cells. (Chin J Ocul Fundus Dis,2000,16:1-70)
ObjectiveTo investigate the differentiation of rat adipose-derived stem cells (ADSCs) into neuronlike cells by indirect co-culture with Schwann cells (SCs) in vitro so as to look for the ideal seed cells for tissue engineering. MethodsSCs were isolated from sciatic nerves of 1-2 days old Sprague-Dawley rats with enzymatic digestion method. Immunofluorescence staining was used to identify SCs with the marker S-100. ADSCs were isolated from the epididymal fat pads of adult male Sprague-Dawley rats by means of differential attachment. And the cell phenotypes (CD29, CD34, CD45, CD73, CD90, and CD105) of ADSCs at passage 3 were determined by flow cytometry analysis. Primary SCs and ADSCs at passage 3 were co-cultured at a ratio of 2:1 in Transwell culture dishes (experimental group), and ADSCs cultured alone served as control group. Immunofluorescence and flow cytometry were adopted to investigate the neural differentiation of ADSCs at 14 days. The expression differences for neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP2), neuronal nuclei protein (NeuN), and glial fibrillary acidic protein (GFAP) were detected, and the percentage of positive cells was calculated. ResultsADSCs were successfully extracted and can passage in a considerable large amount. Flow cytometry analysis showed that ADSCs at passage 3 were positive for CD29, CD90, CD73, and CD105 expression, but negative for CD34 and CD45 expression. The ADSCs of the experimental group showed contraction of nucleus, increasing of soma refraction, and several long and thick protrusions of cell body. The cell shape had no obvious change in the control group. Both immunofluorescence and flow cytometry analysis results showed the expressions of MAP2, NSE, NeuN, and GFAP at 14 days after co-cultured with SCs, and the positive cell ratios were significantly higher than those in the control group (P<0.01). ConclusionCo-culture with SCs not only can promote the survival regeneration of ADSCs, but also can induce the differentiation of ADSCs into neuron-like cells.
ObjectiveTo study the effect of Schwann cells (SCs) promoting the function of nitric oxide (NO) secretion of bone marrow mesenchymal stem cells (BMSCs) derived endothelial cells so as to lay the experimental foundation for research of the effect of nerves on vessels during the process of tissue engineering bone formation. MethodsSCs were collected from 1-day-old Sprague Dawley (SD) rats,and identified through S100 immunohistochemistry (IHC).BMSCs were collected from 2-week-old SD rats and induced into endothelial cells (IECs),which were identified through von Willebrand factor (vWF) and CD31 immunofluorescence (IF).Transwell system was used for co-culture of SCs and IECs without contact as the experimental group,and simple culture of IECs served as the control group.The NO concentration in the medium was measured at 1,3,5,and 7 days after culture; the mRNA expressions of nitric oxide synthetase 2 (NOS2) and NOS3 were detected by real-time fluorescence quantitative PCR (RT-qPCR) at 1,3,7,and 10 days. ResultsSCs and IECs were identified through morphology and immunology indexes of S100 IHC,vWF and CD31 IF.Significant differences were found in the NO concentration among different time points in 2 groups (P<0.05); the NO concentration of the experimental group was significantly higher than that of the control group at the other time points (P<0.05) except at 3 days.NOS2 mRNA expression of the experimental group was significantly higher than that of the control group (P<0.05); difference was significant in the NOS2 mRNA expression among different time points in 2 groups (P<0.05).NOS3 mRNA expression of the experimental group was significantly higher than that of the control group at the other time points (P<0.05) except at 10 days.No significant difference was found in NOS3 mRNA expression among different time points in the experimental group (F=6.673,P=0.062),but it showed significant differences in the control group (F=36.581,P=0.000). ConclusionSCs can promote NO secretion of BMSCs derived endothelial cells,which is due to promoting the activity of NOS.
OBJECTIVE: To purify and study Schwann cells cytoplasmic neurotrophic protein. METHODS: The dissociated SC taken from 300 newborn rats sciatic nerves were cultured, collected, ultrasonicated and ultraspeed centrifuged. The supernates were ultrafiltrated and concentrated by using ultrafiltration units with PM10, PM30, PM50 ultrafiltration membranes. The ultrafiltrated-concentrated solution with the protein molecular weight 10-30 ku, 30-50 ku and gt; 50 ku were collected respectively. The dissociated spinal cord motoneurons of 14 days embryonic rats were cultured with serum-free conditional medium and the additional SC cytoplasmic proteins were added into the medium. The results showed that the 10-30 ku and gt; 50 ku SC cytoplasmic proteins were able to maintain the survival of motoneurons for 24 hours. Then the 26 ku and 58 ku proteins were further extracted and purified from SC cytoplasm by high pressure liquid chromatography, and their neurobiological activities were studied. RESULTS: The 26 ku and 58 ku Schwann cell’s cytoplasmic proteins were able to maintain the survival of motoneurons cultured in the serum-free medium for 48 hours. The highest biological activity concentration is 20 ng per well. CONCLUSION: Schwann cells cytoplasm contains motoneuron neurotrophic proteins with molecular weight 26 ku and 58 ku.