Objective To investigate the effects of simvastatin on lung tissue in septic rats by observing the protein expression of nuclear factor kappa B ( NF-κB) and pathologic changes in lung tissue at different time points. Methods 90 healthy male Sprague-Dawley rats were randomly divided into three groups ( n =30 in each group) . All the rats received administration by caudal vein and capacity volume is 2 mL. The rats in the control group were treated with saline ( 2 mL) . The rats in the LPS group were treated with LPS ( 5 mg/kg ) . The rats in the simvastatin group were treated with LPS ( 5 mg/kg) and simvastatin ( 20 mg/kg) . Six rats in each group were killed randomly at 2, 4, 6, and 12 hours after the injection, and the right middle lobe of lung was taken out. Pathological changes of lung tissue wee investigated under light microscope. The expression of NF-κB in lung tissue was determined by immunohistochemistry ( IHC) method. Results Microscopic studies showed that there were not pathological changes in the lung tissue of rats in the control group. While in the LPS group, the alveolar spaces were narrowed and the alveolar wall were thickened. Furthermore, severe interstitial edema of lung and proliferation of epithelial cells were observed. In the simvastatin group, the degree of the infiltration of leukocytes and the lung interstitial edema were less severe than those in the simvastatin group. In the control group, the expression of NF-κB protein in most of lung tissue was negative. In the LPS group, the expression of NF-κB protein was detected at 2h, andreached the peak at 6h, then decreased at 12h. In the Simvastatin group, the NF-κB expression was significantly lower than that in the LPS group at all time points ( P lt; 0. 01) . Conclusion Simvastatin can ameliorate pathological lesions and decrease expression of NF-κB in lung tissue of septic rats.
Objective To investigate the effect of simvastatin on inducing endothel ial progenitor cells (EPCs) homing and promoting bone defect repair, and to explore the mechanism of local implanting simvastatin in promoting bone formation. Methods Simvastatin (50 mg) compounded with polylactic acid (PLA, 200 mg) or only PLA (200 mg) was dissolved in acetone (1 mL) to prepare implanted materials (Simvastatin-PLA material, PLA material). EPCs were harvested from bone marrow of 2 male rabbits and cultured with M199; after identified by immunohistochemistry, the cell suspension of EPCs at the 3rd generation (2 × 106 cells/mL) was prepared and transplanted into 12 female rabbits through auricular veins(2 mL). After 3 days, the models of cranial defect with 15 cm diameter were made in the 12 female rabbits. And the defects were repaired with Simvastatin-PLA materials (experimental group, n=6) and PLA materials (control group, n=6), respectively. The bone repair was observed after 8 weeks of operation by gross appearance, X-ray film, and histology; gelatin-ink perfusion and HE staining were used to show the new vessels formation in the defect. Fluorescence in situ hybridization (FISH) was performed to show the EPCs homing at the defect site. Results All experimental animals of 2 groups survived to the end of the experiment. After 8 weeks in experimental group, new bone formation was observed in the bone defect by gross and histology, and an irregular, hyperdense shadow by X-ray film; no similar changes were observed in control group. FISH showed that the male EPC containing Y chromosome was found in the wall of new vessels in the defect of experimental group, while no male EPC containing Y chromosome was found in control group. The percentage of new bone formation in defect area was 91.63% ± 4.07% in experimental group and 59.45% ± 5.43% in control group, showing significant difference (P lt; 0.05). Conclusion Simvastatin can promote bone defect repair, and its mechanism is probably associated with inducing EPCs homing and enhancing vasculogenesis.
Objective To find an ideal material for repairing bone defect by local implanting simvastatin compounded with poly-lactic acid (PLA) into the radial critical size defects of rabbits, and to observe the reparative effect and type of bone formation induced by simvastatin. Methods Twelve 4-months-old male New Zealand white rabbits (2.3-2.8 kg) with 22 mm radial critical size defects on both sides were randomized into 4 groups (all n=3). Right side and left side of every rabbit were set as controls with each other. The left defects (experimental groups) of groups A, B, and C were implanted with cyl inder-l ike compound scaffolds containing 50, 100, and 200 mg of simvastatin (fixed with 250 mg PLA), or auto-bonegraft as group D, respectively. The right defects of groups A, B, and C were implanted with scaffolds containing only 250 mg PLA. The right defects of group D were left without any treatment. Digital X-ray images of bone defects were taken 8 and 16 weeks after operation, X-ray was scored double bl ind and X-ray pixel value was measured. Animals were euthanized16 weeks postoperatively. CT was appl ied to analyze new bone formation volume in the defects. In addition, orphologicalcharacters of new bones were observed through micro-CT and histology. Results X-ray films showed that the bone defect of each experimental side had much cloud-l ike callus, and the bone stump were not clear 8 weeks after operation; and the cortex in the defect was continuous and the medullary was recanal ized 16 weeks after operation. In control sides, the cortexes were discontinuous and the ends of fractures were sclerified. At 8 and 16 weeks after operation, the X-ray scores, pixel values and the CT volume percentage of new bone in experiment sides were all significantly higher than those in control sides (P lt; 0.05). The X-ray scores of experimental sides in groups C and D were significantly higher than those in groups A and B 8 weeks after operation (P lt; 0.05), and the X-ray scores of experimental sides in groups B and D were significantly higher than those in groups A and C 16 weeks after operation (P lt; 0.05). The X-ray pixel values of experimental sides of group B were significantly higher than those of groups A, C, and D 8 weeks after operation (P lt; 0.05). The new bone formation volume of experimental side of groups B and D was higher than that of groups A and C (P lt; 0.05), and group D was significantly higher than that of group B (P lt; 0.05). Micro-CT showed bone defects of experimental sides of group B had totally healed, with connected medullary cavities and continuous bone cortex, on the contrary bone defects of control sides of group B did not healed completely. Histological observation showed better bone remodeling effects of the experimental sides than control sides, with connected medullary cavities and continuous bone cortex. And the osteogenetic type was endochondral ossification. Conclusion Local implantation of simvastatin can promote repairing rabbit radial critical bone defect, 100 mg is the best dose of repairing the bone defects.
Objective To investigative the effects of combination treatment with simvastatin and aspirin in a rat model of monocrotaline-induced pulmonary hypertension. Methods Sixty male Sprague-Dawley rats were randomly divided into a control group, a simvastatin group, an aspirin group, and a combination treatment group. The control group received monocrotaline injection subcutaneously to induce pulmonary hypertension. Simvastatin ( 2 mg/kg) , aspirin ( 1 mg/kg) , or simvastatin ( 2 mg/kg) + aspirin ( 1 mg/kg) was administered once daily to the rats of treatment groups respectively for 28 days after monocrotaline injection. Mean pulmonary arterial pressure ( mPAP) was detected by right heart catheter.Right ventricular hypertrophy index ( RVHI) was calculated as the right ventricle to the left ventricle plus septum weight. Histopathology changes of small intrapulmonary arteries were evaluated via image analysissystem. Interleukin-6 ( IL-6) level in lung tissue was determined by ELISA.Results Compared with the control group, simvastatin or aspirin decreased mPAP [ ( 34. 1 ±8. 4) mm Hg, ( 38. 3 ±7. 1) mmHg vs.( 48. 4 ±7. 8) mmHg] and increased arterial wall diameter significantly ( P lt; 0. 05) . The combination treatment group showed more significant improvement in mPAP, RVHI and pulmonary arterial remodeling compared with each monotherapy ( P lt;0. 05) . Moreover, the combination therapy had additive effects on the increases in lung IL-6 levels and the perivascular inflammation score. Conclusions Combination therapy with simvastatin and aspirin is superior in preventing the development of pulmonary hypertension. The additive effect of combination therapy is suggested to be ascribed to anti-inflammation effects.
Objective To evaluate the effectiveness and safety of simvastatin 40 mg daily use in treatment of coronary heart disease. Methods The study was designed as before-after study in the same patients. One hundred and sixty seven patients with coronary heart disease were prescribed simvastatin 40 mg daily for 3 and 6 months. Total cholestero (TC), low-density lipoproteins cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerldes (TG), ALT and creatine kinase (CK) in serum before therapy and at the end of 3 months and 6 months treatment were dectected. Continuous data were analyzed by standard difference of blocked randomization and described by mean±SD. Dunnet-t test was used for multiple comparison of trial and control groups. Statistical difference was set up at P<0.05. Success rate was assessed by chi square test at the end of 3 and 6 months treatment. Results Simvastatin 40 mg/d significantly decreased the level of TC (P<0.000 5), LDL-C (P<0.000 5), TG (P<0.05), and could elevate HDL-C (P<0.05). There were 39.5% of patients whose LDL-C reduced below 70 mg/dl. One patient whose CK raised 5.6 times of upper line of normal range and 4 patients whose ALT raised more than 2 times of upper line of normal range withdrew. The reliability of simvastatin 40 mg/d was relatively good. Conclusions Simvastatin 40 mg/d could significantly improve the lipid profile, and is relatively reliable in treatment of coronary heart disease.
Objective To investigate the effects of simvastatin on monocrotaline-induced pulmonary hypertension in rats, and explore the potential mechanism of simvastatin by blocking heme oxygenase-1( HO-1) expression. Methods 52 male Sprague-Dawley rats were randomly divided into five groups, ie. a control group, a simvastatin control group, a pulmonary hypertension model group, a simvastatin treatment group, a ZnPP ( chemical inhibitor of HO) group. Mean pulmonary arterial pressure ( mPAP) and right ventricular systolic pressure ( RVSP) were detected by right heart catheter at 5th week. Right ventricular hypertrophy index ( RVHI) was calculated as the right ventricle to the left ventricle plus septum weight. Histopathology changes of small intrapulmonary arteries were evaluated via image analysis system.Immunohistochemical analysis was used to investigate the expression and location of HO-1. HO-1 protein level in lung tissue were determined by western blot. Results Compared with the model group, simvastatin treatment decreased mPAP and RVHI significantly [ ( 35. 63 ±5. 10) mm Hg vs. ( 65. 78 ±15. 51) mm Hg,0. 33 ±0. 05 vs. 0. 53 ±0. 06, both P lt; 0. 05 ] . Moreover, simvastatin treatment partially reversed the increase of arterial wall area and arterial wall diameter [ ( 50. 78 ±9. 03 ) % vs. ( 65. 92 ±7. 19) % ,( 43. 75 ±4. 23) % vs. ( 52. 00 ±5. 35) % , both P lt; 0. 01) . In the model group, HO-1 staining was primarily detected in alveolar macrophages. Simvastatin treatment increased HO-1 protein expression significantly, especially in the thickened smooth muscle layer and alveolar macrophages. Inhibiting HO-1 expression using ZnPP resulted in a loss of the effects of simvastatin. mPAP in the ZnPP group was ( 52. 88±17. 45) mm Hg, while arterial wall area and arterial wall diameter were ( 50. 78 ±9. 03) % and ( 52. 00 ±5. 35) % , respectively. Conclusions Simvastatin attenuates established pulmonary arterial hypertension andpulmonary artery remodeling in monocrotaline-induced pulmonary hypertension rats. The effect of simvastatin is associated with HO-1.
ObjectiveTo systematically review the efficacy and safety of simvastatin and its different doses in the adjunct therapy of chronic obstructive pulmonary disease (COPD).MethodsPubMed, EMbase, Web of Science, The Cochrane Library, CNKI, WanFang Data, CBM and VIP databases were electronically searched to collect randomized controlled trials (RCTs) on adjunct therapy of simvastatin in patients with COPD from inception to May 15th, 2020. Two reviewers independently screened literature, extracted data and assessed risk bias of included studies; then, meta-analysis was performed by using Stata 14.0 software.ResultsA total of 22 RCTs involving 2 377 patients were included. The results of meta-analysis showed that treatment with 20 mg simvastatin could improve FEV1%pred, FEV1/FVC, and reduce inflammatory indexes such as CRP, hs-CRP, IL-8 and TNF-α, while 40 mg failed to improve. Simvastatin could reduce COPD score (CAT), but failed to increase the 6-minute walking distance or alleviate acute exacerbation.ConclusionsCurrent evidence shows that treatment with 20 mg simvastatin can improve pulmonary function, reduce inflammatory index and optimize CAT score in COPD patients, but it cannot increase the 6-minute walking distance and reduce the number of acute exacerbations of COPD. Due to the limited quantity and quality of included studies, the above conclusions are needed to be verified by more high-quality studies.
Objective To confirm the stimulating effect of simvastatin on BMSCs of SD rats osteogenic differentiation, and to further study the role of Wnt signal ing pathway in this process. Methods BMSCs derived from the tibia and femur of 6-week-old female SD rats were cultured in vitro.Two groups were establ ished: control group and experimental group. After the 2nd passage, the cells of experimental group were treated with simvastatin (1 × 10-7mol/L) and the cells of control group with absolute ethyl alcohol and PBS. ALP staining was used at 7 days and von Kossa staining was appl ied at 28 days to assess osteoblastic differentiation and mineral ization. Real-time quantitative PCR was performed to evaluate theexpressions of Axin2, β-catenin, osteocalcin (OC), frizzled-2, Lef-1, and Wnt5a mRNA at 7 days and 14 days after simvastatin treatment. Results The observation of inverted phase contrast microscope showed that the majority of cells were polygonal and triangular in the experimental group, and were spindle-shaped in the control group at 7 days. The ALP staining showed blue cytoplasm, the positive cells for ALP staining in the experimental group were more than those in the control group at 7 days. The von Kossa staining showed that mineral ization of extracelluar matrix at 28 days in two groups, but the mineral ization in the experimental group was more obvious than that in the control group. The expression of Axin2 mRNA was significantly lower, and frizzled-2, Lef-1 mRNA were significantly higher in the experimental group than in the control group (P lt; 0.05) at 7 days, while the mRNA expressions of Axin2, OC, frizzled-2, Lef-1, and Wnt5a were significantly higher in the experimental group than in the control group at 14 days (P lt; 0.05). Conclusion Simvastatin can promote the osteogenic differentiation of BMSCs and change the expression of mRNA of some components of Wnt signal ing pathway.
【Abstract】 Objective To approach the possibil ity of combination of simvastatin and BMSCs transplantation forsteroid-associated osteonecrosis of femoral head. Methods The BMSCs harvested from 24 rabbits were prepared for cell suspension at a concentration of 1 × 107/mL, and combined with gelatin sponge. Seventy New Zealand white rabbits received one intravenous injection of l ipopolysaccharide (10 μg/ kg). After 24 hours, three injections of 20 mg/kg of methylprednisolone were given intramuscularly at a time interval of 24 hours. Forty-eight rabbits diagnosed as having femoral head necrosis by MRI were divided into 4 groups randomly, group A: no treatment; group B: only decompression; group C: decompression and BMSCs transplantation; and group D: simvastatin drench (10 mg/kg.d) decompression and BMSCs transplantation. The general information of animals were recorded; after 4 and 8 weeks of operation, 6 rabbits of each group were chosen randomly to do MRI scan, and femoral heads were harvested to do histopathology and scanning electron microscope examination. Results After 8 weeks, rabbits became more active than before treatment, and walking way became normal gradually in groups C and D. Fourweeks after operation, the MRI low signal region of all groups had no obvious changes, but 8 weeks later, the necrosis signal region of group A magnified while it reduced obviously in group D. Histopathological observation: 4 weeks after operation, diffuse presence of empty lacunae and pyknotic nuclei of osteocytes were found in the trabeculae, and few newborn micrangium could been seen in group A; lots of empty lacunae and a small quantity of newborn micrangium could been found in group B; and large amounts of osteoblats and newborn micrangium were found around the necrosis regions in groups C and D. The positive ratio of empty lacunae and microvessel density in group D were 19.30 ± 1.52 and 7.08 ± 1.09, showing significant difference compared with other groups (P lt; 0.05). After 8 weeks of treatment, the bone trabecula collapsed in many regions in group A; there was fibra callus formation along the decompression channel in group B; few empty lacunae was in the bone trabecular, but the shape of marrow cavity was not normal in group C; and it showed almost normal appearance in group D. The positive ratio of empty lacunae and microvessel density in group D were 11.31 ± 1.28 and 12.37 ± 1.32, showing significant differences compared with other groups (P lt; 0.05), meanwhile, showing significant difference compared with that of 4 weeks after operation(P lt; 0.05). Scanning electron microscope: 8 weeks after operation, the bone trabecula collapsed in many regions, and few osteoblasts could be found on the surface, a great quantity of fat cells cumulated in the bone marrow in group A; cracked bone trabecula could be found occasionally in group B; the density of bone trabecula was lower than the normal in group C; and the shape of the marrow avity and thedensity of bone trabecula were similar to the normal in group D. Conclusion Simvastatin can promote the differentiation of osteocyte and vascular endothel ial cell from MSCs, the combination of simvastatin and marrow stem cells transplantation for the treatment of steroid-associated osteonecrosis of femoral head have good appl ication prospects.
Objective To observe the protective effects of simvastatin at different stages on monocrotaline (MCT) induced pulmonary arteral hypertension (PAH) in rats and evaluate the early preventive effect of simvastatin. Methods Twenty-four male SD rats were randomized into a control group, a PAH group, an early intervention group, and a late intervention group, with 6 rats in each group. The rats in the control group received intraperitoneal injection of normal saline (NS) on d0. The rats in the PAH group received one-off intraperitoneal injection of MCT (50 mg/kg) on d0. The rats in the early intervention group were pretreated with oral gavage of simvastatin (20 mg·kg–1·d–1)(d–7––1) before the intraperitoneal one-off injection of MCT (50 mg/kg, d0) and continued with oral gavage of simvastatin for 14 days (d1~14). The rats in the late intervention group received one-off intraperitoneal injection of MCT (50 mg/kg)(d0) and oral gavage of simvastatin (20 mg·kg–1·d–1) for the next 21 days (d15~35). Thirty-five days after the MCT injection (d36), mean pulmonary arterial pressure (mPAP) and right ventricular systolic pressure (RVSP) were measured by right heart catheter. Then the rats were sacrificed for separating the heart and lung, the right ventricular hypertrophy index (RVHI) and percentage of small pulmonary arteries media thickness (WT%), the inflammation score around the small pulmonary arterial were recorded. Results Compared with those in the PAH group, RVSP, mPAP, RVHI and WT% in two simvastatin interventiongroups got much better (P<0.01), and the inflammation score around the small pulmonary arterial declined (P<0.05). Compared with those in the late intervention group, RVSP, mPAP in the early intervention group improved (P<0.05) and WT% decreased more significantly (P<0.01). However RVHI and the inflammation score around the small pulmonary arterial were not different between two simvastatin intervention groups. Conclusions Both early intervention and late intervention with simvastatin can reduce RVSP, mPAP and WT% in MCT induced PAH rats. Compared with later intervention, early intervention can prevent PAH more remarkably.