Objective To investigate the incidence rate, molecular epidemiology and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) infection. Methods A total of 119 Staphylococcus aureus strains isolated from January 2016 to December 2020 in general surgery of this hospital were collected retrospectively and divided into MRSA group and methicillin-sensitive Staphylococcus aureus group according to whether or not resistant to oxacillin. The clinical data of all patients infected with Staphylococcus aureus and drug sensitivity of Staphylococcus aureus were collected. Molecular typing was performed by multilocus sequence typing (MLST), resistance gene, virulence gene and biofilm gene were detected by polymerase chain reaction (PCR) method, and a case-control study was used to identify risk factors for MRSA infection. ResultsThe detection rate of MRSA was 57.98% (69/119), mainly was from pus specimens (80.67%, 96/119). The results of MLST showed that the dominant clone types were ST88 (37.68%, 26/69), ST951 (27.54%, 19/69) and ST59 (18.84%, 13/69). The results of PCR showed that the detection rates of mecA, mecC, Aac (6′ )/Aph (2′ ′ ), Aph (3)-Ⅲ, ant (4′ )- Ⅰ a, tetM, qnrA, panton-valentine leukocidin, fibronectin-binding protein A, staphylococcal enterotoxin A, staphylococcal enterotoxin B, α-hemolysins, intracellular adhesion A, staphylococcal accessory regulators A, and fibronectin-binding protein B in 69 strains of MRSA were 100%, 0.00%, 27.54%, 34.78%, 18.84%, 14.49%, 1.45%, 8.70%, 98.55%, 11.59%, 91.30%, 94.20%, 92.75%, 97.10% and 86.96%, respectively. Multivariate analysis showed that hospital transfer, wound infection, catheter related infection, drainage tube and history of cephalosporin using were risk factors for MRSA infection. ConclusionsThe detection rate of MRSA in general surgery of this hospital is high. ST88 is the most common clone type. The carrying rates of resistant-, virulence- and biofilm-related genes are high. Hospital transfer, wound infection, drainage tube, history of cephalosporin using etc. are high risk factors for MRSA infection. It is advised that invasive operation should be reduced, antibiotics should be used rationally, hand hygiene should be paid attention to, environmental sanitation disinfection should be carried out regularly, and the monitoring of MRSA bacteria should be strengthened, so as to reduce and control the infection and spread of MRSA.
OBJECTIVE: To investigate the ability of repairing bone defect with the compound of coralline hydroxyapatite porous (CHAP), fibrin sealant(FS) and staphylococcus aureus injection (SAI), and the feasibility to use the compounds as bone substitute material. METHODS: The animal model of bone defect was made on the bilateral radius of 54 New Zealand white rabbits, which were randomly divided into the experimental group(the defect was repaired with CHAP-FS-SAI), control group(with autograft) and blank control group(the defect was left unrepaired) with 18 rabbits in each group. The ability of bone defect repair was evaluated by gross observation, histopathological study, X-ray and biomechanical analysis 2, 4, 8 and 12 weeks after repair. RESULTS: (1) In the 2nd week, tight fibro-connection could be found between the implant and fracture site and there were many fibroblasts and capillary proliferation with many chondrocytes around CHAP in the experimental group, while only a few callus formed, and chondrocytes, osteoblast and osteoclast existed in the control group. (2) In experimental group and control group, a large quantity of callus was found 4 and 8 weeks; ossification of chondrocytes with weave bone formation were found 4 weeks and many osteocytes and weave bones and laminar bones were found 8 weeks. (3) In the 12th week, the complete ossification of implant with well bone remodeling, a large number of mature osteocytes and laminar were found in experimental group and control group, and CHAP still existed in the experimental group; the defect area filled with fibro-scar tissue and only many fibroblasts could be seen in blank control group. (4) X-ray findings were the following: In experimental and control groups, callus formation could be seen 2 weeks postoperatively, more callus formed 4 weeks, the bone defect area disappeared and CHAP scattered in the callus 8 weeks; the fracture line disappeared and medullary cavity became united (in control group); and in the 12th week, the cortex became continuous, the medullary cavity became united, and remodeling completed, while bone defect was not still united in blank control group. The maximal torque and torsional stiffness in the experimental group is higher than those in the control group 2 weeks (P lt; 0.05), but there was no significant difference (P gt; 0.05) between the two groups 4, 8, 12 weeks after repair. CONCLUSION: The compound of CHAP-FS-SAI has good biological compatibility, and it can be used for one kind of bone substitute material to repair the bone defect.
Objective To evaluate the toxic effects of staphylococcus aureus exotoxins and neutrophils on retinal pigment epithelium (RPE) cells (RPEC). Methods An in-vitro model of bacteroidal endophthalmitis was established by co-culturing of human RPE cell line D407 and human peripheral blood neutrophils in the present of staphylococcus aureus exotoxins ATCC29213. The level of lactate dehydrogenase hydroxide(LDH)in the cuture supernant was measured, and the viability of RPE was evlauated by flow cytometry and Hoechst 33342/Propidium Iodide(PI)staining. Results When RPE cells were cultured with the exotoxin ATCC29213, the LDH level and necrotic RPE cells were positive proportional to the dosage of exotoxin, but only 250mu;l or 500mu;l of ATCC29213 had a statistical significant effect. When RPE cells were co-cultured with neutrophils in the present of ATCC29213 for 6 hours, 100mu;l of ATCC29213 already had a statistical significant effect on LDH level and necrotic RPEC, and the effect was proportional to the amount of neutrophils in the culture. Conclusion Both staphylococcus aureus exotoxins and neutrophils can damage the RPEC by inducing necrosis, and their function had synergetic effect.
Methicillin-resistant Staphylococcus aureus is one of the important pathogens of healthcare-associated infections. In order to prevent and control the transmission of the drug-resistant organism in healthcare facilities, the Healthcare Infection Society and the Infection Prevention Society jointly conducted the guidelines for the prevention and control of methicillin-resistant Staphylococcus aureus in 2021. This article introduces the guide from the background, preparation process, main prevention and control measures and further studies, and compares the guidelines with the current prevention and control measures in China, so as to provide a methodological reference for preparation of the guide for domestic infection prevention and control practitioners, and provide evidence-based prevention and control strategies for clinical practice.
ObjectiveTo investigate the effect of the estradiol hormones on biofilm formati on and structure of Staphylococcus epidermidis after breast implant surgery. MethodsThe concentration of Staphylococcus epidermidis strains ATCC35984 was adjusted to 1×107 CFU/mL or 1×108 CFU/mL, and the type strains were incubated on the surface of silica gel in 125 pmol/L estradiol suspensions to prepare bacterial biofilms model in vitro. After cultured in vitro for 4, 6, 12, 24, 48, and 72 hours, bacteria growth and biofilm formation ability were assessed by means of the XTT and crystal violet staining respectively. According to the above results, the bacterial suspension concentration was selected for experiments. The experimental concentration of Staphylococcus epidermidis ATCC35984 suspension and the concentrations of 50, 125, 250, 500 pmol/L estradiol suspensions were mixed with silica gel respectively to prepare biofilm model in vitro, no estradiol suspension served as control group. The experimental concentration of Staphylococcus epidermidis ATCC12228 suspension was used to prepare the same model in the negative control. After cultured in vitro for 4, 6, 12, 24, 48, and 72 hours, the same methods were used to assess the bacteria growth dynamics and biofilm forming ability, and the scanning electron microscope (SEM) was used to observe bacterial biofilm structure cultured on the surface of silica gel; the laser scanning confocal microscope (CLSM) was used to measure bacterial biofilm thickness on the surface of silica gel after 6, 12, and 24 hours. ResultsAccording to the results of semi quantitative detection of crystal violet stain and XTT methods, the bacterial suspension of 1×107 CFU/mL was selected for the experiment. XTT results indicated that the growth rates of ATCC12228 strain (at 4, 6, 12, 24, and 72 hours) and ATCC35984 strain (at 4, 6, 24, and 72 hours) in 125, 250, and 500 pmol/L estradiol were significantly faster than those in 0 and 50 pmol/L (P < 0.05). The growth rate of 500 pmol/L group was significantly faster than 125 and 250 pmol/L groups at 4, 6, and 72 hours (P < 0.05), and the growth rate of 250 pmol/L group was significantly faster than that of 125 pmol/L group at 72 hours (P < 0.05), but there was no significant difference between 0 and 50 pmol/L groups (P>0.05). At the same time point and same estradiol concentration, the growth rates showed no significant difference between 2 strains (P>0.05). Semi quantitative detection of crystal violet staining showed no biofilm formed in ATCC12228 strain in all estradiol concentration groups at different time points. In ATCC35984 strain, the biofilm was found at 4 hours and gradually thickened with time, reached the peak at 24 hours. After cultured for 4 and 6 hours, the biofilm of 0 pmol/L groups were significantly thicker than that of 125, 250, and 500 pmol/L groups (P < 0.05). At 12 hours, the 125 pmol/L group had the thickest biofilm, showing significant difference when compared with other groups (P < 0.05). The CLSM showed ATCC35984 biofilm thickness of 125, 250, and 500 pmol/L was significantly less than that of 0 and 50 pmol/L groups at 6 hours (P < 0.05), but difference was not significant between other groups (P>0.05). Then the thickness of the biofilm increased gradually, and the thickness of 125 pmol/L group was significantly larger than that of other concentration groups at 12 and 24 hours (P < 0.05). The SEM observation showed that the biofilm of 125 pmol/L group was denser and thicker than that of the other concentration groups at each time point. ConclusionHigh level estradiol can promote bacteria growth, biofilm formation, and biofilm maturity of Staphylococcus epidermidis.
Objective Mesh infection may occur after incisional hernia repair using prosthetic mesh. Preparation of antibiotics-bonded meshes to prevent infection is one of the solutions. To evaluate the anti-infection effect of polypropylene mesh bonded norvancomycin slow-release microsphere by preparing the rat model of incisional hernia repair contaminatedwith Staphylococcus aureus. Methods The norvancomycin slow-release microspheres were prepared by emulsion and solvent evaporation method and they were bonded to polypropylene mesh (50 mg/mesh). The appearance of the microspheres was observed using scanning electronic microscope (SEM). The content of norvancomycin in microspheres and the release rate of the norvancomycin in norvancomycin-bonded polypropylene mesh were detected using high performance l iquid chromatography method. The rat models of incisional hernia were developed in 40 healthy Sprague Dawley rats, aged 10-11 weeks and weighing 200-250 g. The rats were divided randomly into the experimental group (norvancomycin-bonded polypropylene mesh repair, n=20) and the control group (polypropylene mesh repair, n=20). And then the mesh was contaminated with Staphylococcus aureus. The wound heal ing was observed after operation. At 3 weeks after operation, the mesh and the tissue around the mesh were harvested to perform histological observation and to classify the inflammatory reaction degree. Results The norvancomycin microsphere had integrated appearance and smooth surface with uniform particle diameter, 64% of particlediameter at 60 to 100 μm, and the loading-capacity of norvancomycin was 19.79%. The norvancomycin-bonded polypropylene patch had well-distributed surface and the loading-capacity of norvancomycin was (7.90 ± 0.85) mg/cm2. The release time of norvancomycin in vitro could last above 28 days and the accumulative release rate was 72.6%. The rats of 2 groups all survived to experiment completion. Wound infection occurred in 2 rats of the experimental group (10%) and 20 rats of the control group (100%), showing significant difference (χ2=32.727 3, P=0.000 0). The inflammatory reaction in experimental group was not obvious, grade I in 16 rats and grade II in 4 rats, and numerous inflammatory cell infiltration occurred in the control group, grade II in 3 rats and grade III in 17 rats, showing significant difference (Z=32.314, P=0.000). Conclusion The polypropylene mesh bonded norvancomycin slow-release microsphere has definite anti-infection effect in rat model of incisional hernia repair contaminated by Staphylococcus aureus.
ObjectiveTo analyze the pathogenic bacteria distribution, structure and characteristics of drug resistance in patients with acute stroke complicated with pulmonary infection, in order to provide reference for the prevention of hospital infection and rational use of antimicrobial agents. MethodsA total of 864 clinical specimens of acute stroke complicated with pulmonary infection were chosen for study between January 2012 and December 2014. Separation and cultivation were done in accordance with the operation procedures regulated by the Ministry of Health. Drug sensitivity examination was done by Kirby-Bauer (k-b). Super-extensive spectrum β lactamase (ESBL) and methicillin resistant staphylococcus aureus (MRSA) were detected to analyze the bacterial species and resistance transition. ResultsA total of 864 samples were cultivated, in which G-bacteria accounted for 61.2%. The main pathogenic bacteria was Klebsiella pneumoniae bacteria, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanmii and Staphylococcus aureus. Imipenem had high antimicrobial activity to G-bacilli, especially to Escherichia coli and Klebsiella pneumoniae bacteria. Linezolid, vancomycin and teicoplanin had high antibacterial activity to staphylococcus aureus. Vancomycin resistant Staphylococcus aureus was not found. Ciprofloxacin had high antibacterial activity to Pseudomonas aeruginosa, while imipenem had low antibacterial activity to Pseudomonas aeruginosa. Amikacin had high antibacterial activity to acinetobacter. ConclusionG-bacilli are predominant in acute stroke complicated with pulmonary infection. ESBLs and MRSA detection rate is high, and we should pay attention to the rational use of antibiotics to reduce drug resistance.
ObjectiveTo explore drug resistance, resistant mechanisms and resistant phenotypes of staphylococcus aureus (SA) isolated from wound secretion to macrolides-lincosamides-streptogramins (MLS). MethodsA retrospective design was used to collect clinical data and antimicrobial resistance profiles of SA in the First Affiliated Hospital and the Second Affiliated Hospital of Fujian Medical University and Anxi County Hospital from June, 2008 to October, 2015. SPSS 19.0 software was used for data analysis. ResultsA total of 127 isolates were included. The distribution of four resistant phenotypes of SA to MLS were all susceptibility(S) type (n=48, 37.8%), ML type (n=41, 32.3%), M/iCR+ type (n=22, 17.3%) and MLS type (n=16, 12.6%), respectively; There were three kinds of phenotypes caused by target changing including ML type, M/iCR+ type and MLS type, respectively. Moreover, no moxicaxin, linezolid or tigecyline resistant strain was detected, while quinolons and tetracyclines showed low-level resistant. ConclusionCompared with the different samples, the resistant phenotypes of SA isolated from wound secretion to MLS are few, and the total resistance ratio is low.
Objective To investigate the effect of aureolysin (Aur) on staphylococcus aureus biofilm formation of dacron biomaterial surfaces under different Aur concentration. Methods Ninety dacron biomaterials were divided into 3 groups (group A, group IA, control group) with random number table (30 piece in each group). Dacron biomaterials were put into vials contained staphylococcus aureus (105 CFU/ml) respectively; then Aur was added to make the concentration at 400ng/ml in group A, and group B at 80ng/ml. The thickness and number of staphylococcus aureus biofilm on the surfaces of dacron biomaterials of each group were evaluated by confocal laser microscopy and scanning electron microscopy after incubating 6h, 16h, 24h, 30h, and 48h. Results The thickness and number of staphylococcus aureus biofilm on dacron biomaterials surfaces increased significantly with time dependence in control group. The thickness and number of staphylococcus aureus biofilm in group A were less than those in group B and control group at each time points (P〈0. 05). The thickness and number in group B were significantly decreased than those in control group (P 〈 0. 05). Conclusion The study shows that Aur can effectively inhibit the formation of staphylococcus aureus biofilm on dacron biomaterials surfaces with dose dependence.
ObjectiveTo explore the function of intercellular adhesion A (icaA), fibrinogen binding protein (fbe), and accumulation-associated protein (aap) genes in formation of Staphylococcus epidermidis-Candida albicans mixed species biofilms. MethodsThe experiment was divided into 3 groups:single culture of Staphylococcus epidermidis ATCC35984 (S. epidermidis group) or Candida albicans ATCC10231 (C. albicans group), and co-culture of two strains (mixed group) to build in vitro biofilm model. Biofilm mass was detected by crystal violet semi-quantitative adherence assay at 2, 4, 6, 8, 12, 24, 48, and 72 hours after incubation. XTT assay was performed to determine the growth kinetics in the same time. Scanning electron microscopy (SEM) was used to observe the ultrastructure of the biofilms after 24 and 72 hours of incubation. The expressions of icaA, fbe, and aap genes were analyzed by real-time fluorescent quantitative PCR. ResultsCrystal violet semi-quantitative adherence assay showed that the biofilms thickened at 12 hours in the S. epidermidis and mixed groups; after co-cultured for 72 hours the thickness of biofilm in mixed group was more than that in the S. epidermidis group, and there was significant difference between 2 groups at the other time (P<0.05) except at 72 hours (P>0.05). In C. albicans group, the biofilm started to grow at 12 hours of cultivation, but the thickness of the biofilm was significantly lower than that in the mixed group in all the time points (P<0.05). XTT assay showed that the overall growth speed in the mixed group was greater than that in the C. albicans group, and it was greater than that in the S. epidermidis group at 48 hours; there was no significant difference in the growth speed between the mixed groups and the S. epidermidis group in the other time points (P>0.05) except at 12 hours (P<0.05). The absorbance (A) value in the mixed group was lower than that in the S. epidermidis group at 2 and 4 hours, but no significant difference was shown (P>0.05); the A value of mixed group was significantly higher than that of the C. albicans group after 6 hours (P<0.05). SEM observation showed that mature biofilms with complex structure formed in all groups. The real-time fluorescent quantitative PCR showed the expressions of fbe, icaA, and aap genes in mixed group increased 1.93, 1.52, and 1.46 times respectively at 72 hours compared with the S. epidermidis group (P<0.05). ConclusionMixed species biofilms have more complex structure and are thicker than single species biofilms of Staphylococcus epidermidis or Candida albicans, which is related to increased expressions of the icaA, fbe, and aap genes of Staphylococcus epidermidis.