【Abstract】Objective Stromal cell-derived factor-1(SDF-1, CXCL12) is a member of the CXC subfamily of chemokines which, through its cognate receptor (CXCR4), plays an important role in tumor invasion and metastasis. This study analyzed quantitatively the expression of SDF-1 and its relation with clinicopathologic feature and clinical outcome in human breast cancer.Methods Expression of SDF-1 mRNA in 8 breast cancer cell lines, an endothelial cell line HECV and a fibroblast cell MRC5 was studied by using RT-PCR. In addition, the expression of SDF-1 was investigated at both protein (immunohistochemistry) and mRNA(real-time PCR) levels in a group of human normal mammary(n=32) and tumour tissues(n=120). Results SDF-1 expression was identified in MRC5, MDA-MB435s, MDA-MB436, MCF7 cell lines, breast tumour and normal tissues. Significantly higher level of SDF-1 was seen in lymph node positive than in lymph node negative tumours (399.00±210.00 vs 0.89±0.47), P=0.048. The level of SDF-1 expression in patients who developed local recurrence or metastasis, or patients who died of breast cancer was higher than in patients who were disease free as well, (670.00±346.00 vs 0.83±0.35), P=0.01. It was most notable that level of SDF-1 was significantly correlated with over survival (P=0.01) and incidence free survival (P=0.035, by Cox proportion analysis).Conclusion SDF-1 is a factor that is expressed in both stromal cells and some breast cancer cells. Its level are correlated with lymph node involvement, prognosis and survival in patients with breast cancer. SDF-1 may therefore have a potential prognostic value in breast cancer.
Objective To find a kind of simple and effective method for purifying and label ing stromal vascular fraction cells (SVFs) so as to provide a theoretical basis for cl inical application of SVFs. Methods The subcutaneous adi pose tissue were harvested form volunteers. The adi pose tissue was digested with 0.065%, 0.125%, and 0.185% type I collagenase,respectively. SVFs were harvested after digestion and counted. After trypan blue staining, the rate of viable cells was observed. SVFs was labeled by 1, 1’-dioctadecyl-3, 3, 3’, 3’-2-tetramethy-lindocyanine perchlorate (DiI). The fluorescent label ing and growth was observed under an inverted fluorescence microscope. MTT assay was used to detect cell proliferation. Results The number of SVFs was (138.68 ± 11.64) × 104, (183.80 ± 10.16) × 104, and (293.07 ± 8.31) × 104 in 0.065% group, 0.125% group, and 0.185% group, respectively, showing significant differences among 3 groups (P lt; 0.01). The rates of viable cells were 91% ± 2%, 90% ± 2%, and 81% ± 2% in 0.065% group, 0.125% group, and 0.185% group, respectively, and it was significantly higher in 0.065% group and 0.125% group than in 0.185% group (P lt; 0.01), but no significant difference was found between 0.065% group and 0.125% group (P=0.881). Inverted fluorescence microscope showed that the cell membranes could be labeled by DiI with intact cell membrane, abundant cytoplasm, and good shape, but nucleus could not labeled. SVFs labeled by DiI could be cultured successfully and maintained a normal form. MTT assay showed that similar curves of the cell growth were observed before and after DiI labeled to SVFs. Conclusion The optimal collagenase concentration for purifying SVFs is 0.125%. DiI is a kind of ideal fluorescent dye for SVFs.
Objective To review research progress of adipose tissuederived stromal cells (ADSCs).Methods The recent articles on ADSCs were extensively reviewed, and the culture and differentiation ability of ADSCs were investigated.Results A population of stem cells could be isolated from adult adipose tissue, they were processed to obtain a fibroblast-like population of cells and could be maintained in vitro for extended periods with stable population doubling. The majority of the isolated cells were mesenchymal origin, with a few pericytes,endothelial cells and smooth muscle cells. ADSCs could be induced to differentiate intomultiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic and adipogenic cells, they could also differentiate into nerve cells.Conclusion ADSCs can substitute mesenchymal stem cells and become an alternative stem cells source for tissue engineering.
The osteogenc potential of bone marrow has been proved by experiment. To investigate more in details, bone marrow was obtained from the trochanteric region of femur of NewZealand rabbit in 4 to 8 weeks old. After being cultured in vitro for one week, the hematopoietic component of the bone marrow had disappeared, thus the stromal cells were obtained. Then the stromal cells were subcultured in cultural fluid containing dexamethasone (10-8 mol/L) and natrium glycerophosphate (10mmol/L). Under the phasecontrast microscope, it was found that being cultured for 15 days. The stromal cells were lined up in one layer and late the secretion activity was increased and gradually transformed into multilayer structure and was congregated into diffused opaque clusters in twenty days. During culture, the cells were examined by tetracycline fluorescence label, histochemistry stains, transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray microanalysis. The results showed that the morphological and biological characteristics of the cultured stromal cells derived from the bone marrow were similiar to those of osteoblasts and could synthesized mineralized new bone tissue in vitro.
ObjectiveTo evaluate the mechanism of stromal vascular fraction (SVF) promoting angiogenesis and tissue regeneration in tissue engineering chamber. MethodsTwenty-four 6-month-old New Zealand white rabbits, male or female, weighing 2.5-2.8 kg, were selected. Thoracic dorsal arteriovenous bundle combined with collagen type I scaffold was transplanted to dorsal side, and wrapped by cylindrical hollow silicone chamber; all animals were randomly divided into the experimental group (n=12) and the control group (n=12). SVF was isolated from the back fat pads of rabbits in experimental group and labelled with DiI at 2 weeks after operation. The 1 mL cell suspension (1×106 cells/mL) and equal saline were injected into the chamber in experimental group and control group, respectively. The regenerative tissues were harvested for general observation and HE staining at 2 and 4 weeks after injection;and immunofluorescent staining was carried out in experimental group at 4 weeks. ResultsAt 2 weeks after injection, the regenerative tissue was cylindrical; obvious vessel network and incompletely degradable collagen scaffold could be seen on the surface of the new tissue in 2 groups. The volume of new tissue was (0.87±0.11) mL in experimental group, and (0.72±0.08) mL in control group at 2 weeks, showing significant difference (t=2.701, P=0.011). At 4 weeks, little collagen scaffold could be seen on the surface in control group, but no collagen scaffold in experimental group; the volume of new tissue was (0.74±0.14) mL in experimental group, and (0.64±0.10) mL in control group, showing no significant difference (t=1.424, P=0.093). HE staining showed new mature vessels at 4 weeks, but no adipose tissue or fat lobulus formed in both groups; the capillary density was significantly higher in experimental group than in control group at 2 weeks (t=6.291, P=0.000) and at 4 weeks (t=5.445, P=0.000). The immunofluorescent staining found that SVF survived and located at the edge area after 4 weeks; the expressions of CD31 and DiI were positive in some endothelial cells. ConclusionSVF can promote the angiogenesis and tissue regeneration in tissue engineering chamber, but it can not differentiate into adipocyte spontaneously without adipogenic microenvironment.
Objective To investigate the role and relative mechanism of stromal cell derived factorl (SDF-1) secreted by nucleus pulposus cells (NPCs) on the proliferation of vascular endothelial cells (VECs). Methods The NPCs were isolated from the degenerated disc specimens after discectomy. NPCs at passage 1 were transfected with lentivirus-mediated SDF-1 over-expression; transfected and untransfected NPCs at passage 2 were cultured in the three-dimensional alvetex® scaffold, then they were co-cultured with HMEC-1 cells. The morphology of NPCs was observed by scanning electron microscope (SEM), and the apoptosis of HMEC-1 cells was detected by Annexin V/propidiumiodide staining after 72 hours co-culutre. The proliferation of HMEC-1 cells was detected by cell counting kit 8 at 12, 24, 48, and 72 hours in transfected group and untransfected group, respectively. ELISA was used to measure the vascular endothelial growth factor (VEGF) expression level. The virus transfection efficiency and relative Akt pathway were determined by Western blot. Results The NPCs maintained cell phenotype and secreted much extracellular matrix in three-dimensional-culture by SEM observation. In the co-culutre system, after NPCs were transfected with SDF-1 over-expression lentivirus, the proliferation of HMEC-1 cells was significantly increased, while the apoptosis was decreased obviously. The ELISA results demonstrated that the amount of VEGF was remarkably increased in the culture medium. Furthermore, SDF-1 promoted the up-regulation of phosphorylate Akt expression; after inhibition of Akt expression by GSK690693, the proliferation rate of VECs decreased significantly. Conclusion Over-expression of SDF-1 by NPCs is beneficial for VECs proliferation, which is involved in SDF-1-Akt signalling pathway.
ObjectiveTo observe the change of stromal cell-derived factor 1α/cysteine X cysteine receptor 4 (SDF-1α/CXCR4) signaling pathway during the process of axial stress stimulation promoting bone regeneration, and to further explore its mechanism.MethodsA total of 72 male New Zealand white rabbits were selected to prepare the single cortical bone defect in diameter of 8 mm at the proximal end of the right tibia that repaired with deproteinized cancellous bone. All models were randomly divided into 3 groups (n=24). Group A was treated with intraperitoneally injection of PBS; Group B was treated with stress stimulation and intraperitoneally injection of PBS; Group C was treated with stress stimulation and intraperitoneally injection of AMD3100 solution. The X-ray films were taken and Lane-Sandhu scores of bone healing were scored at 2, 4, 8, and 12 weeks after operation, while specimens were harvested for HE staining, immunohistochemical staining of vascular endothelial growth factor (VEGF) and CXCR4, and Western blot (SDF-1α and CXCR4). The bone healing area was scanned by Micro-CT at 12 weeks after operation, and the volume and density of new bone were calculated.ResultsX-ray film showed that the Lane-Sandhu scores of bone healing in group B were significantly higher than those in groups A and C at 4, 8, and 12 weeks after operation (P<0.05). Micro-CT scan showed that the bone defect was repaired in group B and the pulp cavity was re-passed at 12 weeks after operation. The volume and density of new bone were higher in group B than in groups A and C (P<0.05). HE staining showed that the new bone growth in bone defect area and the degradation of scaffolds were faster in group B than in groups A and C after 4 weeks. The immunohistochemical staining showed that the expressions of VEGF and CXCR4 in 3 groups reached the peak at 4 weeks, and group B was higher than groups A and C (P<0.05). Western blot analysis showed that the expressions of SDF-1α and CXCR4 in group B were significantly higher than those in groups A and C at 4 and 8 weeks after operation (P<0.05).ConclusionAxial stress stimulation can promote the expression of SDF-1α in bone defect tissue, activate and regulate the CXCR4 signal collected by marrow mesenchymal stem cells, and accelerate bone regeneration in bone defect area.
ObjectiveTo explored the effect of stromal cell-derived factor 1α (SDF-1α) on promoting the migration ability of rat adipose derived stem cells (rADSCs) by constructed the rADSCs overexpression SDF-1α via adenovirus transfection.MethodsrADSCs were isolated from adipose tissue of 6-week-old SPF Sprague Dawley rats. Morphological observation, multi-directional differentiations (osteogenic, adipogenic, and chondrogenic inductions), and flow cytometry identification were performed. Transwell cell migration experiment was used to observe and screen the optimal concentration of exogenous SDF-1α to optimize the migration ability of rADSCs; the optimal multiplicity of infection (MOI) of rADSCs was screened by observing the cell status and fluorescence expression after transfection. Then the third generation of rADSCs were divided into 4 groups: group A was pure rADSCs; group B was rADSCs co-cultured with SDF-1α at the best concentration; group C was rADSCs infected with recombinant adenovirus-mediated green fluorescent protein (Adv-GFP) with the best MOI; group D was rADSCs infected with Adv-GFP-SDF-1α overexpression adenovirus with the best MOI. Cell counting kit 8 (CCK-8) and Transwell cell migration experiment were preformed to detect and compare the effect of exogenous SDF-1α and SDF-1α overexpression on the proliferation and migration ability of rADSCs.ResultsThe cell morphology, multi-directional differentiations, and flow cytometry identification showed that the cultured cells were rADSCs. After screening, the optimal stimulating concentration of exogenous SDF-1α was 12.5 nmol/L; the optimal MOI of Adv-GFP adenovirus was 200; the optimal MOI of Adv-GFP-SDF-1α overexpression adenovirus was 400. CCK-8 method and Transwell cell migration experiment showed that compared with groups A and C, groups B and D could significantly improve the proliferation and migration of rADSCs (P<0.05); the effect of group D on enhancing the migration of rADSCs was weaker than that of group B, but the effect of promoting the proliferation of rADSCs was stronger than that of group D (P<0.05).ConclusionSDF-1α overexpression modification on rADSCs can significantly promote the proliferation and migration ability, which may be a potential method to optimize the application of ADSCs in tissue regeneration and wound repair.
Objective To introduce types and differentiation potentials of stem cells from adipose tissue, and its applications on regenerative medicine and advantages. Methods The literature of original experimental study and clinical research about bone marrow mesenchymal stem cells (BMSCs), adipose-derived stem cells (ADSCs), and dedifferentiated fat (DFAT) cells was extensively reviewed and analyzed. Results ADSCs can be isolated from stromal vascular fraction. As ADSCs have multi-lineage potentials, such as adipogenesis, osteogenesis, chondrogenesis, angiogenesis, myogenesis, and neurogenesis, they have already been successfully used in regenerative medicine areas. Dramatically, mature fat cells can be dedifferentiated and changed into fibroblast-like cells, named DFAT cells, via ceiling culture method. DFAT cells also had the same multi-lineage potentials as ADSCs, differentiating into adipocytes, osteocytes, chondrocytes, endothelial cells, muscle cells, and nerve cells. Compared with BMSCs which are commonly used as adult stem cells, ADSCs and DFAT cells have extensive sources and can be easily acquired. While compared with ADSCs, DFAT cells have good homogeneity and b proliferation capacity. Conclusion As a potential source of stem cells, adipose tissue will provide a new promising for regenerative medicine.
Objective To introduce the related issues in the clinical translational application of adipose-derived stem cells (ASCs). Methods The latest papers were extensively reviewed, concerning the issues of ASCs production, management, transportation, use, and safety during clinical application. Results ASCs, as a new member of adult stem cells family, bring to wide application prospect in the field of regenerative medicine. Over 40 clinical trials using ASCs conducted in 15 countries have been registered on the website (http://www.clinicaltrials.gov) of the National Institutes of Health (NIH), suggesting that ASCs represents a promising approach to future cell-based therapies. In the clinical translational application, the related issues included the quality control standard that management and production should follow, the prevention measures of pathogenic microorganism pollution, the requirements of enzymes and related reagent in separation process, possible effect of donor site, age, and sex in sampling, low temperature storage, product transportation, and safety. Conclusion ASCs have the advantage of clinical translational application, much attention should be paid to these issues in clinical application to accelerate the clinical translation process.