ObjectiveTo evaluate the application value of three-dimensional (3D) reconstruction in preoperative surgical diagnosis of new classification criteria for lung adenocarcinoma, which is helpful to develop a deep learning model of artificial intelligence in the auxiliary diagnosis and treatment of lung cancer.MethodsThe clinical data of 173 patients with ground-glass lung nodules with a diameter of ≤2 cm, who were admitted from October 2018 to June 2020 in our hospital were retrospectively analyzed. Among them, 55 were males and 118 were females with a median age of 61 (28-82) years. Pulmonary nodules in different parts of the same patient were treated as independent events, and a total of 181 subjects were included. According to the new classification criteria of pathological types, they were divided into pre-invasive lesions (atypical adenomatous hyperplasia and and adenocarcinoma in situ), minimally invasive adenocarcinoma and invasive adenocarcinoma. The relationship between 3D reconstruction parameters and different pathological subtypes of lung adenocarcinoma, and their diagnostic values were analyzed by multiplanar reconstruction and volume reconstruction techniques.ResultsIn different pathological types of lung adenocarcinoma, the diameter of lung nodules (P<0.001), average CT value (P<0.001), consolidation/tumor ratio (CTR, P<0.001), type of nodules (P<0.001), nodular morphology (P<0.001), pleural indenlation sign (P<0.001), air bronchogram sign (P=0.010), vascular access inside the nodule (P=0.005), TNM staging (P<0.001) were significantly different, while nodule growth sites were not (P=0.054). At the same time, it was also found that with the increased invasiveness of different pathological subtypes of lung adenocarcinoma, the proportion of dominant signs of each group gradually increased. Meanwhile, nodule diameter and the average CT value or CTR were independent risk factors for malignant degree of lung adenocarcinoma.ConclusionImaging signs of lung adenocarcinoma in 3D reconstruction, including nodule diameter, the average CT value, CTR, shape, type, vascular access conditions, air bronchogram sign, pleural indenlation sign, play an important role in the diagnosis of lung adenocarcinoma subtype and can provide guidance for personalized therapy to patients in clinics.
ObjectiveTo analyze intrahepatic vascular structures, divide liver segment automatically, and carry out virtual anatomic hepatectomy for virtual liver surgery planning based on liver threedimensional images. MethodsThe branches of portal vein were labeled in the level of segment based on spiral CT scanning images by using the liver surgery planning system software Liv 1.0. Thus, the simulation of an anatomical resection could be carried out. ResultsAccording to the portal segment branches, each individual liver segment could be divided automatically. The three-dimensional liver model was reconstructed based on liver segments, and the margin of liver segments was displayed clearly. On that basis, the simulation of anatomical resection and the volumetric estimation could be performed. ConclusionsThe three-dimensional liver model with intrahepatic vessel is reconstructed clearly, automatic segmentation of liver segment, the simulation of anatomical resection, and volumetric estimation can be applied in succession. The planning can be accomplished with Liv 1.0 on personal computer by the user, which provides a software platform for clinical application of virtual liver techniques.
Objective To investigate the application of three-dimensional (3D) reconstruction technology in preoperative planning for anterolateral thigh flap transplantation. Methods A retrospective analysis was performed on the clinical data of 11 patients with skin and soft tissue defects treated with free anterolateral thigh flap transplantation between January 2022 and January 2024, who met the selection criteria. There were 8 males and 3 females, aged 34-70 years (mean, 50.8 years). Causes of injury included traffic accidents (4 cases), machine trauma (3 cases), heavy object crush injury (3 cases), and tumor (1 case). The time from injury to flap repair ranged from 7 to 35 days (mean, 23 days). Preoperatively, the patients’ CT angiography images were imported into Mimics21.0 software. Through the software’s segmentation, editing, and reconstruction functions, 3D visualization and measurement of the vascular pedicle, perforators, wound size, and morphology were performed to plan the flap harvest area, contour, vascular pedicle length, and anastomosis site, guiding the implementation of flap transplantation. Results The length of the vascular pedicle needed by the recipient site was (9.1±0.9) cm, and the maximum length of vascular pedicle in the donor area was (10.6±0.6) cm, with a significant difference (t=4.230, P<0.001). The operation time ranged from 220 to 600 minutes (mean, 361.9 minutes). One patient had poor wound healing at the recipient site, which healed after dressing changes. All 11 flaps survived well without necrosis. All patients were followed up 6-19 months (mean, 11 months). Four flaps showed bulkiness and underwent secondary debulking; the remaining flaps had good contour and soft texture. The donor sites healed well, with no sensory disturbance around the incision or complications such as walking impairment.ConclusionPreoperative planning using CT angiography data and 3D reconstruction software can effectively determine the flap area, contour, required vascular pedicle length, anastomosis site, and whether vascular grafting is needed, thereby guiding the successful execution of anterolateral thigh flap transplantation.
Reconstructing three-dimensional (3D) models from two-dimensional (2D) images is necessary for preoperative planning and the customization of joint prostheses. However, the traditional statistical modeling reconstruction shows a low accuracy due to limited 3D characteristics and information loss. In this study, we proposed a new method to reconstruct the 3D models of femoral images by combining a statistical shape model with Laplacian surface deformation, which greatly improved the accuracy of the reconstruction. In this method, a Laplace operator was introduced to represent the 3D model derived from the statistical shape model. By coordinate transformations in the Laplacian system, novel skeletal features were established and the model was accurately aligned with its 2D image. Finally, 50 femoral models were utilized to verify the effectiveness of this method. The results indicated that the precision of the method was improved by 16.8%–25.9% compared with the traditional statistical shape model reconstruction. Therefore, the method we proposed allows a more accurate 3D bone reconstruction, which facilitates the development of personalized prosthesis design, precise positioning, and quick biomechanical analysis.
ObjectiveTo further understand the anatomical characteristics and rules of left upper lingual pulmonary artery.MethodsCT data of 120 patients (82 males, 38 females, median age of 65 years ranging 36-78 years) with pulmonary nodules from December 2018 to August 2020 in our hospital were retrospectively analyzed. The anatomic characteristics of the lingual segment of the upper left lung were analyzed by three-dimensional reconstruction. ResultsMediastinal lingual artery appeared in 34 of the 120 patients, accounting for 28.4%. There were 26 patientsof mixed mediastinal/interlobar type, 8 patients of pure mediastinal lingual artery, and 92.3% (24/26) mixed mediastinal/interlobar type blood vessel contained A4b. Fifty-eight (58/120, 48.3%) patients had interlobar type A4+5 type, the rest were two-branches type. And 22 patients of A4 and A5 type accounted for the most two-branches type (22/28, 78.6%). The single-branch type was located at the distal end of A6 in 54 (54/58, 93.1%) patients, originated from the proximal end of A6 in 4 patients, and originated from the basilar artery in 6 patients. The two-branches type was at the distal end of A6 accounting for 50.0% (14/28).ConclusionMediastinal lingual artery is more common than expected, accounting for 28.4%, among which mixed lingual artery is more prevalent, usually located in the first pulmonary trunk, and mostly follows the principle of proximity to supply relevant lung tissues. The location of the interlobar branches in the pulmonary trunk can be at the distal or proximal end of A6, care should be taken to avoid damaging adjacent structures.
Objective To study digitize design of custom-made radial head prosthesis and to verify its matching precision by the surgery of preoperative three-dimensional (3-D) virtual replacement. Methods Six healthy adult volunteers (3 males and 3 females, aged 25-55 years with an average of 33 years) received slice scan of bilateral elbow by Speed Light 16-slice spiral CT. The CT Dicom data were imported into Mimics 10.0 software individually for 3-D reconstruction image, and the left proximal radial 3-D image was extracted, the mirror of the image was generated and it was split into 2 pieces: the head and the neck. The internal diameter and the length of the radial neck were obtained by Mimics 10.0 software measurement tools. In Geomagic Studio 12 software, the radial head was simulated to cover the cartilage surface (1 mm thickness) and generated to an entity. In UG NX 8.0 software, the stem of prosthesis was designed according to the parameters above and assembled head entity. Each custom-made prosthesis was performed and verified its matching precision by the surgery of preoperative 3-D virtual replacement. Results Comparing the morphology of 6 digitize custom-made prostheses with ipsilateral radial heads by the 3-D virtual surgery, the error was less than 1 mm. The radial head prosthesis design on basis of the contralateral anatomy was verified excellent matching. Conclusion The 3-D virtual surgery test and the digitized custom-made radial head prosthesis will be available for clinical accurate replacement.
Objective To quantitatively evaluate the effect of 2 types of pressures induced injury by using threedimensional (3D) reconstruction of rats loaded tibial is anterior muscle from two-dimensional (2D) image of serial histological sections. Methods Twenty female or male Sprague Dawley rats, aged 10-12 weeks and weighing 280-300 g, were randomlydivided into experimental group (n=10) and control group (n=10). The random side of tibial is anterior muscle was givenintermittent gradient (8.0-21.3 kPa) and sustained (13.3 kPa) pressure in 0.12 cm2 area in experimental group and controlgroup, respectively; the experiment was terminated and the general condition of rats was observed after 3 cycles, and a single cycle included 2 hours of compression and 30 minutes of release. The general observations of pressed skin and tibial is anterior muscle were done after 24 hours of pressure rel ief, and the tibial is anterior muscle was harvested integrally from the loaded side, then made into interval 4 μm serial sections. After HE staining, 2D images were obtained. Necrosis and injury areas were distinguished by Image Pro Plus (IPP) 6.0 software and image registration was conducted by Photoshop 8.0.1 after 2D panorama images acquired by digital microscope (× 40) and IPP mosaic software. 3D reconstruction was establ ished via data processing using Mimics 10.1 software so as to get the volume, the surface area, and 3D images of the whole piece of tibial is anterior muscle and injury areas respectively. Results All rats of 2 groups survived till experiment terminated and no skin ulcers occurred after 24 hours. Edema and indentation were observed on press side skin and tibial is anterior muscles of 2 groups, fadeless maroon area was observed in control group. A total of 994 sl ices were obtained from 20 samples of tibial is anterior muscles. 3D images suggested that injury of control group was severe, which penetrated the whole piece of tibial is anterior muscle and expandedalong the tibia bony prominence. By contrast, injury of experimental group was less, but had similar width to the contact surface of indentor. There was no significant difference in the volume and the surface area of tibial is anterior muscle between 2 groups (P gt; 0.05), while the injury volume and the injury surface area were significantly smaller in experimental group than in control group (P lt; 0.05). Conclusion 3D reconstruction is an effective method to quantitatively evaluate pathological changes inside the integrity tissue and can provide the visual basis for the mechanical property distributed in the loaded muscle. Intermittent gradient pressure can reduce deep tissue injury.
Objective To review the application progress of digital technology in auricle reconstruction. Methods The recently published literature concerning the application of digital technology in auricle reconstruction was extensively consulted, the main technology and its specific application areas were reviewed. Results Application of digital technology represented by three-dimensional (3D) data acquisition, 3D reconstruction, and 3D printing is an important developing trend of auricle reconstruction. It can precisely guide auricle reconstruction through fabricating digital ear model, auricular guide plate, and costal cartilage imaging. Conclusion Digital technology can improve effectiveness and decrease surgical trauma in auricle reconstruction. 3D bioprinting of ear cartilage future has bright prospect and needs to be further researched.
Objective To investigate the cl inical directive significance of three-dimensional reconstruction of CT in treating mandibular angle hypertrophy. Methods Between March 2009 and January 2011, 18 patients with mandibular angle hypertrophy were treated using the three-dimensional reconstruction technology of CT. All patients were female, aged20-36 years with an average of 25 years. Eighteen patients included: 14 single mandibular angle hypertrophy, 3 mandibular angle hypertrophy with masseter hypertrophy, and 1 mandibular angle hypertrophy with bilateral asymmetry; 6 cases of ptosis of mandibular angle, 9 cases of prominent mandibular angle, and 3 cases of introversive mandibular angle. According to the types of mandibular angle hypertrophy, the surgical methods could be correctly chosen. The procedure was planned and simulated; the osteotomy l ine was marked and the osteotomy was measured on the workstations of three-dimensional reconstruction. Results No fracture of mandible occurred in the operation. Facial nerve temporary attack occurred in 1 case and recovered at 3 months after operation. All patients were followed up 6-12 months (mean, 7.6 months). After 6 months of operation, the effectiveness was satisfactory in 15 cases, basically satisfactory in 2 cases, and unsatisfactory in 1 case (bilateral asymmetry). Conclusion Based on three-dimensional reconstruction technology of CT, surgical design performed on the model will promote the accuracy of operation. Basically symmetrical appearances can be achieved with satisfactory results.
Objective To investigate the feasibility of establishing the visualization models of intraneural microvessels of sciatic nerves in Sprague Dawley (SD) rats by systemic infusion of Evan’s blue (EB) or lead oxide and to compare the advantages and disadvantages. Methods Fifteen healthy adult SD rats of either gender, weighing 200-250 g, were randomly divided into traditional group (group A, n=5), fluorescence group (group B, n=5), and radiography group (group C, n=5). Ink, EB, and lead oxide, all mixed with gelatin solution, were injected in groups A, B, and C, respectively. After 2 hours of cryopreservation under 4°C, all sciatic nerves were harvested and observed through stereomicroscope to make sure the filling condition. The two-dimentional (2D) images were then collected via reflexion fluorescent microscope in group B and via micro-CT scan in group C. All images were imported into computer to establish three-dimentional (3D) reconstruction models by Mimics 15.0. Results All groups could show the outline of intraneural microvessels of sciatic nerves under stereomicroscope. Diameters of them were measured under fluorescent microscope, ranging from 10 µm to 30 µm. Both groups B and C could establish 3D reconstruction models from 2D images. These models could clearly reproduce the structure of microvessels. Conclusion Both EB and lead oxide can be used to establish 3D reconstruction models to observe structure of the intraneural vessels. However, EB has some disadvantages, such as predisposition to infiltration, grainy 2D images and time-consuming procedure; it is not suitable for researches of large specimen. Though 2D pictures from lead oxide have lower resolution than EB, it is easier to be manipulated and appropriate for experiments of large specimen.