OBJECTIVE: To compare the effect of several types of rib rings with intercostal muscles for the replacement of trachea in thorax. METHODS: The surface layer of the third rib of dogs were ripped off and curved into triangular, quadrilateral and polygonal form. These three types of rib rings with intercostal muscles were used to replace a segment of trachea in thorax. RESULTS: The stability of triangular rib ring was very well, but stricture of ring were often happened because of its smaller internal diameter. These stability of quadrilateral rib ring was the worst. The polygonal rib ring presented the biggest diameter and good stability compared to the other two kinds of rings. If silicone tube was supplemented in the polygonal rib ring, the quality of artificial trachea was excellent. CONCLUSION: The rib rings with intercostal muscles are successfully used for replacing the defect of trachea in canine thorax. The polygonal rib rings have the best quality in the three types of rib ring for tracheal replacement.
Tissue engineering trachea is an artificial trachea with biological activity, which is constructed in vitro by using tissue engineered principle and technology, and is a tracheal prosthesis for replacing large circumferential defect of the trachea. The course of its construction is as follows. First, seeding cells are cultured and expanded in vitro. Then they are collected, counted and seeded onto the biomaterial scaffold of tissue consistent and biodegradation. Finally, the biomaterial-cells construction is implanted into bio-reaction device or one’s subcutaneous layer. The tissue engineering trachea could be constructed after cultured certain times. Compared with other artificial trachea, the tissue engineering trachea has more advantages, such as nonimmunogenicity, no side-effects related to foreign graft materials, and biologic activity. This will bring some hope to look for an appropriate graft material. However, the study about it is still faced with some difficult problems, such as vascularized trachea, culturing in vitro, and prevention of infection in trachea prosthesia. So there will be long time for tissue engineering trachea to apply clinical tracheal transplantation successfully. This assay has reviewed the study about tissue engineering trachea from three sides——the source of seeding cells, the research about biomaterial scaffold, and the construction of tissue engineering trachea.
Objective To investigate the application and long-termresults of epiglottic in reconstruction of the traumatic laryngotracheal stenosis.Methods From January 1988 to February 2002, 42 patients with traumatic laryngotracheal stenosis were treated, including 33 laryngeal stenosis and9 laryngotracheal stenosis. The following surgical treatment were performed: ① lowered epiglottic andbi-pedicled sternohyoid myofascial flap and ② lowered epiglottic and bipedicledsternohyoid myofascial flap and sternocleidomastoideus clavicle membrane flap. Results Thirty-seven patients(88.1%) were successfully decannulated 10 to 75 daysafter operation. Feeding tube lasted from 9 to 24 days, all the patients rehabilitated deglutition after surgery. The time of using stent was 9 to 19 days in 25cases.All patients were followed up 1 year to 3 years and 4 months. The function of larynx recovered completely in 37 decannulated patients and partially in 5cannulated patients. Conclusion Epiglottic- has the advantages of easy gain, high antiinfection and survival rate, and stable structure. A combination of epiglottic and the bipedicled sternohyoid myofascial flap plus sternocleidomastoideus clavicle membrane flap can repair large laryngeal and tracheal defects.
ObjectiveTo evaluate the effect of different doses of dexmedetomidine on hemodynamics during endotracheal extubation of laparoscopic cholecystectomy in patients with hypertension. MethodsA total of 120 hypertension patients ready to undergo laparoscopic cholecystectomy under general anesthesia between December 2013 and December 2014 were chosen to be our study subjects. They were randomly divided into 4 groups with 30 patients in each:saline control group (group C), low-dose dexmedetomidine hydrochloride injection group (group D1), moderate-dose dexmedetomidine hydrochloride injection group (group D2), and high-dose dexmedetomidine hydrochloride injection group (group D3). The anesthesia methods and drugs were kept the same in each group, and 20 mL of saline, 0.25, 0.50, 1.00 μg/kg dexmedetomidine (diluted to 20 mL with saline) were given to group C, D1, D2, and D3 respectively 15 minutes before the end of surgery. Time of drug administration was set to 15 minutes. We observed and recorded each patient's mean arterial pressure (MAP) and heart rate (HR) in 5 particular moments:the time point before administration (T1), immediately after administration (T2), extubation after administration (T3), one minute after extubation (T4), and 5 minutes after extubation (T5). Surgery time, recovery time, extubation time and the number of adverse reactions were also detected. ResultsCompared at with, MAP and HR increased significantly at the times points of T3, T4, T5 compared with T1 and T2 in Group C and group D1 (P<0.05), while the correspondent difference was not statistically significant in group D2 and D3 (P>0.05). Compared with group C, MAP and HR decrease were not significantly at the time points of T3, T4, T5 in group D1 (P>0.05). However, MAP and HR decrease at times points of T3, T4, T5 in group D2 and D3 were significantly different from group C and D1 (P<0.05). After extubation, there were two cases of dysphoria in group C and two cases of somnolence in group D3, but there were no cases of dysphoria, nausea or shiver in group D1, D2, D3. ConclusionIntravenously injecting moderate dose of dexmedetomidine 15 minutes before the end of surgery can effectively reduce patients' cardiovascular stress response during laparoscopic cholecystectomy extubation for patients with hypertension, and we suggest a dose of 0.5 μg/kg of dexmedetomidine.
In vivo transplantation of tracheal grafts utilizes natural environment in vivo to improve cell adhesion, growth and scaffold properties, which can not only promote graft revascularization, but also induce immune tolerance and increase postoperative survival rate. Decellularized trachea with stem cells covering the outside layer and airway epithelial cells covering the inside layer can achieve complete mucosa re-epithelialization, cartilage cell growth and revascularization, using own body as a natural bioreactor to boost the maturity of tissue engineered trachea. Then transplantation at a normotopic in situ positioning is performed. This transplantation strategy provides a promising approach for the treatment of long-segment tracheal defects. This review focuses on the significance and research progress of constructing tissue engineered trachea in vivo.
In tracheal resection and reconstruction, a technically demanding, complex, and high-risk procedure, management of the anastomotic site significantly impacts postoperative outcomes and long-term quality of life. However, comprehensive studies detailing perioperative anastomotic management strategies in tracheal reconstruction remain scarce. This review summarizes perioperative management strategies for tracheal reconstruction, covering preoperative assessment, surgical techniques, and other key aspects. It also highlights future research directions and challenges, aiming to provide clinicians with a systematic guide to perioperative management in tracheal reconstruction.
Stent migration is one of the common complications after tracheal stent implantation. The causes of stent migration include size mismatch between the stent and the trachea, physiological movement of the trachea, and so on. In order to solve the above problems, this study designed a non-uniform Poisson ratio tracheal stent by combining the size and structure of the trachea and the physiological movement of the trachea to improve the migration of the stent, meanwhile ensuring the support of the stent. In this study, the stent corresponding to cartilage was constructed with negative Poisson's ratio, and the stent corresponding to the circular connective tissue and muscular membrane was constructed with positive Poisson's ratio. And four kinds of non-uniform Poisson's ratio tracheal stents with different link lengths and negative Poisson's ratio were designed. Then, this paper numerically simulated the expansion and rebound process of the stent after implantation to observe the support of the stent, and further simulated the stretch movement of the trachea to calculate the diameter changes of the stent corresponding to different negative Poisson's ratio structures. The axial migration of the stent was recorded by applying different respiratory pressure to the wall of the tracheal wall to evaluate whether the stent has anti-migration effect. The research results show that the non-uniform Poisson ratio stent with connecting rod length of 3 mm has the largest diameter expansion in the negative Poisson ratio section when the trachea was stretched. Compared with the positive Poisson's ratio structure, the axial migration during vigorous breathing was reduced from 0.024 mm to 0.012 mm. The negative Poisson's ratio structure of the non-uniform Poisson's ratio stent designed in this study did not fail in the tracheal expansion effect. Compared with the traditional stent, the non-uniform Poisson's ratio tracheal stent has an anti-migration effect under the normal movement of the trachea while ensuring the support force of the stent.
Objective To investigate the effects of ambroxol hydrochloride on surface structure of trachea mucosa in rats injured by intratracheally instilled amikacin. Methods Thirty Wistar rats injured by intratracheally instilled amikacin ( 0. 252 mL/kg) were randomly divided into a control group ( n =15) and an ambroxol group ( n= 15) . The rats in the ambroxol group were intraperitoneally injected with ambroxol hydrochloride ( 70 mg/kg) 5 minutes after amikacin administration. They were all equally divided into five subgroups and sacrificed at 2, 4, 8, 28, 48 hours respectively. Then the samples of 1/3 lower segment of trachea were collected and observed under scanning electron microscope. Results In the control group, the mucous secretion and its stickness were increased. The cilia were found lodged, sticked together, aligned abnormally, abrupt partly, and recovered slowly, with the percentage of damaged area of 98. 2% , 98. 5% , 97. 5%, 92. 7% , 82. 1% at 2, 4, 8,24,48 h, respectively. The injuries of mucosa in the ambroxol group were much milder and recovered more rapidly than those in the control group, with the percentage of damaged area of 85. 7% , 81. 9% , 73. 0% , 61. 9% , 50. 2% at 2, 4, 8, 24, 48 h, respectively. Conclusions Intratracheal instillation of amikacin can cause cilia ultrastructure damage on tracheal mucosa. Ambroxol can promote the recovery process and alleviate airway inflammation.
Objective To evaluate the clinical features and complications of bedside tracheal intubation in intensive care unit ( ICU) , and explore the suitable strategy of intubation. Methods In this retrospective study,42 patients who underwent bedside tracheal intubation in ICU during September 2008 and March 2009 were divided into a schedule group ( n =24) and an emergency group ( n =18) . The time to successful intubation, number of intubation attempts, and complications were recorded. The schedule group was defined as those with indications for intubation and fully prepared, while the emergency group was defined as those undergoing emergency intubations without full preparation due to rapid progression of disease and accidental extubation. Results The success rate for all patients was only 57. 1% on the first attempt ofintubation. The main complications during and after induction were hypotension ( 45. 2% ) and hypoxemia ( 50. 0% ) . Compared with the emergency group, the schedule group had fewer attempts to successful intubation ( 1. 71 ±1. 12 vs. 2. 67 ±1. 75) , higher success rate on the second attempt ( 87. 5% vs.61. 1%) , and lower ypoxemia incidence ( 29. 1% vs. 77. 8%, P lt; 0. 05) . Conclusions The tracheal intubation in ICU is a difficult and high risk procedure with obvious complications. Early recognition ofpatients with indications and well preparation are critical to successful bedside intubation.
Objective To review the research advances of the tracheal prosthesis. Methods The articles concerned in recent years were extensively reviewed. Results There were still many arguments about the use of tracheal substitutes. Avariety of artificial trachea had been designed and assessed, but so far none of them had been satisfactory for clinical use. The failures were mainly due to their high mortality and incidence of complication such as prosthetic defluvium, granuloma formation, local infection, air leakage, anastomotic stenosis or obstruction. Conclusion The major causes of the poor effectiveness by the use of tracheal prosthesis are closely related to its biological compatibilities. The selected biomaterials and the design of prosthesis hold the key to a breakthrough in research and clinical use of tracheal prosthesis.