Objective To construct recombinant adenovirus vector containing human transforming growth factor beta 3 (TGF-β3), which was transfected into marrow mesenchymal stem cells(MSCs) and to observe its expression. Methods The cDNA TGF-β3 was intergraded into the shuttle vector of pAdTrack-CMV and recombinated with adenovirus skeleton vector pAdEasy-1 by homologous recombination. Then the product was transfected into package cell HEK293 by lipofedtamine and the recombinant adenovirus expressing the TGF-β3genewas generated. The rabbit’s MSCs were isolated, cultivated, purified, and then transfected with recombinant adenovirus containing the TGF-β3 gene. The green fluorescence protein expression was observed after 10 days, and the TGF-β3 expression was observed in MSCs transfected by recombinated adenovirus with TGF-β3 gene after 4 days. Results PCR showed that TGF-β3 cDNA was inserted into the recombinantadenoviral plasmid. The recombinant virus vectors with TGF-β3 gene were collected by the packaging HEK293 cells. The fusion rate of MSCs was 70%-80% with an intensive adhesion and uninform shape after the cultured 10th day. Fluorescent microscopy and immunocytochemistry demonstrated that TGF-β3 was expressed in MSCs. Conclusion Successful construction of human TGF-β3 recombinant adenovirus and its expression in MSCs provide a basis of research for the gene therapy of wound healing.
OBJECTIVE To study the relationship between the changes of mRNA expression in wound tissues of diabetic ulcers and tissue repair. METHODS The mRNA expression of TGF-beta 1 and IL-6 in eight bioptic samples of diabetic ulcers were detected by RT-PCR and pathologic methods, and the surrounding normal skins from the same patients were measured as control group. RESULTS The mRNA expression levels of TGF-beta 1 were markedly decreased in the diabetic ulcers compared with control group, while the mRNA expression levels of IL-6 were increased at the same reaction conditions. CONCLUSION The different changes of mRNA expression level of TGF-beta 1 and IL-6 in wound tissue result in low production and decreased activity of TGF-beta 1 and IL-6, which lower the reparative ability of wound tissue.
Objective To construct the recombinant adenovirus bearing human transforming growth factor β1(TGF-β1) and bone morphogenetic protein 7 (BMP-7) genes, and investigate its co-expression in the marrow stromalstemcells (MSCs) and bioactivity effect. Methods Using the replication defective adenovirus AdEasy as a carrier, MSCs were infected by the high-titer-level recombinant adenovirus taking TGF-β1 and BMP-7 genes. Immunocytochemistry, in situ hybridization,reverse transcription-polymerase chain reaction (RT-PCR), and hexuronic acid level test were used to detect the coexpression of the exogenous genes and to analyze their effect transfection on directive differentiation of MSCs. Results The immunocytochemistry staining showed that the brown coarse grains were situated in the cytoplasm of the most MSCs 72 h after infection. Procollagen ⅡmRNA in the cells was detected by the in situ hybridization, and the content of hexuronic acid in the culture mediumwas significantly increased 10 days after infection compared with the level before infecton (Plt;0.01). Conclusion The recombinant adenovirus bearing human TGF-β1 and BMP-7 genes can be constructed, and the exogenous gene can be coexpressed in MSCs, which may offer a novel approach to thelocal combination gene therapy for repairing joint cartilage defects.
ObjectiveTo construct and identify the recombinant adenovirus vector expressing bone morphogenetic protein 2(BMP-2) and transforming growth factor β3(TGF-β3) genes,to observe the expressions of BMP-2 and TGF-β3 after transfected into bone marrow mesenchymal stem cells (BMSCs) of the Diannan small-ear pigs. MethodsBMP-2 cDNA and TGF-β3 cDNA were amplified by PCR,and were subcloned into the pEC3.1(+) plasmid to obtain pEC-GIE 3.1-BMP-2 and pEC-GIE3.1-TGF-β3 plasmid respectively.They were subcloned into pGSadeno vector by homologous recombination reaction and HEK293 cells were transfected after linearization to obtain Ad-BMP-2 and Ad-TGF-β3.The BMSCs were isolated from the bone marrow of Diannan small-ear pig and cultured.The 3rd passage BMSCs were transfered with Ad-BMP-2(group A),Ad-TGF-β3(group B),Ad-BMP-2+Ad-TGF-β3(group C),and untransfected cells served as a control (group D).The expressions of BMP-2 and TGF-β3 genes and proteins were detected by PCR,immunofluorescence,and Western blot.The chondrogenic differentiation of BMSCs was evaluated by immunohistochemical of collagen type Ⅱ. ResultsThe Ad-BMP-2 and Ad-TGF-β3 were constructed successfully and confirmed by PCR and sequencing.The expression clones of Ad-BMP-2 and Ad-TGF-β3 were packaged into maturated adenovirus successfully,the titer was 5.6×108 and 1.6×108 pfu/mL respectively.The PCR results showed a light band at 310 bp in group A and at 114 bp in group B,and both 310 bp and 114 bp bands in group C,but no band in group D.The image of immunofluorescence showed that there were red fluorescence and green fluorescence expressions in the cytoplasm of BMSCs at 72 hours after transfection in groups A and B,respectively;in group C,both red and green fluorescence expressions were detected,and no red or green fluorescence was detected in group D.The results of Western blot showed that there was a light band at 18×103 in group A and at 50×103 in group B;both 18×103 and 50×103 bands were detected in group C;but no band was detected in group D.The cells were positive for collagen type Ⅱ in groups A,B,and C;group C acquired strong collagen type Ⅱ staining when compared with group A and group B;in group D,the cells were negative for collagen type Ⅱ staining. ConclusionThe recombinant adenovirus vector expressing BMP-2 and TGF-β3 are constructed successfully.The BMP-2 and TGF-β3 genes could be expressed effectively in BMSCs of Diannan small-ear pig after transfection,which could afford modified seeding cells for cartilage tissue engineering.
OBJECTIVE: To investigate the effects of basic fibroblast growth factor (bFGF) on the promoter activities of human alpha 1(I) procollagen gene and the interaction between bFGF and transforming growth factor-beta 1 (TGF-beta 1). METHODS: Fibroblasts of the hypertrophic scar and normal skin from a 3-year-old patient were primarily cultured and subcultured in vitro. Both of the fibroblasts were transient transfected with phCOL 2.5, containing -2.5 kb of 5’f lank sequence of human alpha 1(I) procollagen gene and CAT reporter gene by FuGENE transfection reagent; and treated thereafter by 16 ng/ml bFGF, 2 ng/ml TGF-beta 1 and 16 ng/ml bFGF + 2 ng/ml TGF beta 1 for 24 hours. The relative CAT expression values were determined by CAT-ELISA. RESULTS: TGF-beta 1 bly induced the CAT expression level, however, bFGF not only inhibited the basal CAT expression but also reduced the CAT expression up-regulated by TGF-beta 1 in normal skin and hypertrophic scar fibroblasts (P lt; 0.05). CONCLUSION: bFGF can reduce the promoter activities of human alpha 1(I) procollagen gene and antagonize the role of TGF-beta 1 in up-regulating the promoter activities of human alpha 1(I) procollagen gene in normal skin and hyertrophic scar fibroblasts.
Objective To access the protective effects of glucosamine hydrochloride capsules (OTL) on articular cartilage in osteoarthritis of rabbit. Methods Thirty-six New Zealand white rabbits were divided randomly into three groups (n=12): sham group (group A), anterior cruciate l igament transection (ACLT)/normal sal ine group (group B), and ACLT/ OTL group (group C). Rabbits in groups B, C received ACLT on the right knee. Rabbits in group A were not given ACLT ascontrol. Group C received a daily administration of OTL at a dose of 150 mg/kg of body weight for 12 weeks; in contrast, group B received normal sal ine at the same dose. All rabbits were sacrificed after 12 weeks. The right femoral condyle were removed and observed at pathologic changes with HE staining and graded by Mankin’s scale, the expression level of transforming growth factor β1 (TGF-β1) and interleukin 1β (IL-1β) were detected by immunohistochemical staining. Results All rabbits survived at the end of experiment and incision healed well. The gross observation showed that joint synovia increased and articular surface was smooth and integrity in group A; that ulcer was observed on the articular surface of group B; and that articular surface was smooth and integrity in group C. There were sigificant differences in articular cartilage scores between 3 groups (P lt; 0.05). The histological observation showed that the articular cartilage had normal structure and the cells arranged regularly in group A; that the articular cartilage became thin and the cells arranged irregularly in group B; and that the cells arranged with a clear layer and had regular shape in group C. The Mankin scores were 1.04 ± 0.13, 7.97 ± 0.12, and 2.81 ± 0.36 in groups A, B, and C, respectively; showing significant difference between 3 groups (P lt; 0.05). The result of immunohistochemistry showed that the expressions of TGF-β1 were 50.62 ± 1.51, 24.81 ± 1.28, and 41.57 ± 1.69 and the expressions of IL-1β were 13.12 ± 1.21, 62.53 ±2.37, and 30.67 ± 1.28; showing significant differences between 3 groups (P lt; 0.05). Conclusion A daily administration ofOTL at a dose of 150 mg/kg for 12 weeks can partially decrease the expression levels of IL-1β and increase the expression levels of TGF-β1, which delays the development of osteoarthritis.
Objective To investigate the role of transforming growth factor β(TGF-β)in the regulation of the gene expression of matrix metalloproteinase 13(MMP-13)in the human hyaline chondrocytes. Methods The human hyaline chondrocytes harvested enzymatically and cultured in DMEM supplemented with 20% fetus calf serum were divided into 7 groups. Group 1 was used as a contol, and 1 ng/ml TGF-β(group 2), 10 ng/ml TGF-β(group 3), 100 ng/ml TGF-β(group 4), 1 ng/ml TGF-β+10 ng/ml IL-1β(group 5), 10 ng/ml TGF-β+10 ng/ml IL-1β(group 6),and 100 ng/ml TGF-β+10 ng/ml IL1β(group 7) were given for 12-hour coculture. The MMP-13 mRNA levels of passaged human hyaline chondrocytes were assessed by reverse transcriptionpolymerase chain reaction(RT-PCR) and real-time fluorescent quantitative PCR. Results TGF-β can increase the MMP-13 mRNA level respectively in the passagedhyaline chondrocytes. In the multifactor treated groups, TGF-β can decrease the MMP-13 mRNA level respectively and there was significant difference between groups (Plt;0.05).The level of MMP-13 mRNA expression had significant coherence withthe dosage of TGF-β. Conclusion The above results show that human chondrocytes express MMP-13 mRNA. TGF-β could cause a dosedependent stimulation on MMP-13 gene expression in human chondrocytes and have a potent effect of antagonizing IL-1β in osteoarthritis. TGF-β may play a crucial role in the occurrence anddevelopment of osteoarthritis through regulating MMP-13.
Objective To evaluate the cell biological features and the effect of transplantation of transforming growth factor β3 (TGF-β3) gene-modified nucleus pulposus (NP) cells on the degeneration of lumbar intervertebral discs in vitro. Methods NP cells at passage 2 were infected by recombinant adenovirus carrying TGF-β3 (Ad-TGF-β3) gene (Ad-TGF-β3 group), and then the cell biological features were observed by cell vital ity assay, the expression of the TGF-β3 protein was determined by Western blot, the expression of collagen type II in logarithmic growth phase was determined by immunocytochemistry. The cells with adenovirus-transfected (Adv group) and the un-transfected cells (blank group) were used as controls. The model of lumbar disc degeneration was establ ished by needl ing L3, 4, L4, 5, and L5, 6 in 30 New Zealand rabbits (weighing 3.2-3.5 kg, male or female). Then Ad-TGF-β3-transfected rabbit degenerative nucleus pulposus cells (100 μL, 1 × 105/ mL, group A, n=12), no gene-modified nucleus pulposus cells (100 μL, 1 × 105/mL, group B, n=12), and phosphatebuffered sal ine (PBS, 100 μL, group C, n=6) were injected into degenerative lumbar intervertebral discs, respectively. L3, 4, L4, 5, and L5, 6 disc were harvested from the rabbits (4 in groups A and B, 2 in group C) at 6, 10, and 14 weeks respectively to perform histological observation and detect the expression of collagen type II and proteoglycan by RT-PCR. Results The viabil ity of nucleus pulposus cells was obviously improved after transfected by recombinant Ad-TGF-β3 gene. At 3, 7, and 14 days after transfected, TGF-β3 expression gradually increased in nucleus pulposus cells. The positive staining of collagen type II was seen in Ad-TGF-β3 group, and the positive rate was significantly higher than that of Adv group and blank group (P lt; 0.05). The disc degeneration in group A was sl ighter than that in groups B and C. The expressions of collagen type II mRNA and proteoglycan mRNA in group A were significantly higher than those in groups B and C at 6, 10, and 14 weeks (P lt; 0.05). Conclusion TGF-β3 can improve the biological activity of NP cells and promote the biosynthesis of collagen type II and proteoglycan in intervertebral discs, alleviate the degeneration of intervertebral discs after transplantation.
OBJECTIVE: To study the effect of overexpression of truncated type II TGF-beta receptor on transforming growth factor-beta 1(TGF-beta 1) autoproduction in normal dermal fibroblasts. METHODS: In vitro cultured dermal fibroblasts were treated with recombinant human TGF-beta 1(rhTGF-beta 1) (5 ng/ml) or recombinant adenovirus containing truncated type II TGF-beta receptor gene (50 pfu/cell). Their effects on regulating gene expression of TGF-beta 1 were observed with Northern blotting. RESULTS: rhTGF-beta 1 up-regulated the gene expression of TGF-beta 1 and type I procollagen. Overexpression of truncated receptor II down-regulated the gene expression of TGF-beta 1. CONCLUSION: Overexpression of the truncated TGF-beta receptor II decreases TGF-beta 1 autoproduction via blocking TGF-beta receptor signal. The results may provided a new strategy for scar gene therapy.
ObjectiveTo investigate the role of transforming growth factor β1(TGF-β1) and connective tissue growth factor (CTGF) in pathogenesis and progression of human intervertebral disc degeneration by detecting the expressions of these two factors in different degrees of degenerative discs. MethodsThe lumbar intervertebral discs were collected from 33 patients with lumbar disc herniation and 12 patients with lumbar vertebral fracture between November 2012 and April 2013.All samples were observed under the microscope after HE staining,and then were divided into different subgroups according to the degenerative degree.The expressions of TGF-β1 and CTGF were detected by Western blot. ResultsAccording to the pathological features,10 discs were defined as normal discs,10 as mild degenerative discs,9 as moderate degenerative discs,and 16 as severe degenerative discs.The histological observation showed that rounded nucleus pulposus cells with similar size evenly distributed in the cartilage-like matrix,and no hyperplastic collagenous fiber was seen in normal discs;mild degenerative discs characterized by slightly larger nucleus pulposus cells in the matrix,but cells did not decrease,a small quantity of inflammatory cells infiltrated in the matrix,hyperplasia of collagenous fiber was not seen;most of the nucleus pulposus cells became bigger,some showed a bulb form,the number of nucleus pulposus cells was significantly reduced,low grade hyperplasia of collagenous fiber emerged in the matrix,new vessels and inflammatory cells were both found in some specific areas of discs in moderate degenerative discs;there was no nucleus pulposus cells in the matrix of severe degenerative discs,the hyperplasia of collagenous fiber was obvious.The relative expression of TGF-β1 in 3 degeneration discs was significantly higher than that in normal discs (P<0.05),and the expression of TGF-β1 was significantly higher in severe degenerative discs than in moderate and mild degenerative discs (P<0.05),but no significant difference between moderate and mild degenerative discs (P>0.05).The relative expression of CTGF in moderate and severe degeneration discs was significantly higher than that in normal discs (P<0.05);and the expression of CTGF in mild degenerative discs was higher than that in normal discs,but there was no significant difference (P>0.05);and significant difference in CTGF expression was found among 3 degeneration discs (P<0.05). ConclusionThe expressions of TGF-β1 and CTGF are closely related to the degree of human lumbar disc degeneration,these two factors may play an important role in promoting lumbar intervertebral disc degeneration.