west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Wear" 21 results
  • Effect of prosthetic joint line installation height errors on insert wear in unicompartmental knee arthroplasty

    The clinical performance and failure issues are significantly influenced by prosthetic malposition in unicompartmental knee arthroplasty (UKA). Uncertainty exists about the impact of the prosthetic joint line height in UKA on tibial insert wear. In this study, we combined the UKA musculoskeletal multibody dynamics model, finite element model and wear model to investigate the effects of seven joint line height cases of fixed UKA implant on postoperative insert contact mechanics, cumulative sliding distance, linear wear depth and volumetric wear. As the elevation of the joint line height in UKA, the medial contact force and the joint anterior-posterior translation during swing phase were increased, and further the maximum von Mises stress, contact stress, linear wear depth, cumulative sliding distance, and the volumetric wear also were increased. Furthermore, the wear area of the insert gradually shifted from the middle region to the rear. Compared to 0 mm joint line height, the maximum linear wear depth and volumetric wear were decreased by 7.9% and 6.8% at –2 mm joint line height, and by 23.7% and 20.6% at –6 mm joint line height, the maximum linear wear depth and volumetric wear increased by 10.7% and 5.9% at +2 mm joint line height, and by 24.1% and 35.7% at +6 mm joint line height, respectively. UKA prosthetic joint line installation errors can significantly affect the wear life of the polyethylene inserted articular surfaces. Therefore, it is conservatively recommended that clinicians limit intraoperative UKA joint line height errors to –2−+2 mm.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • A gait signal acquisition and parameter characterization method based on foot pressure detection combined with Azure Kinect system

    The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.

    Release date:2023-06-25 02:49 Export PDF Favorites Scan
  • Research on simulation and optimal design of a miniature magnetorheological fluid damper used in wearable rehabilitation training system

    The goal of this paper is to solve the problems of large volume, slow dynamic response and poor intelligent controllability of traditional gait rehabilitation training equipment by using the characteristic that the shear yield strength of magnetorheological fluid changes with the applied magnetic field strength. Based on the extended Bingham model, the main structural parameters of the magnetorheological fluid damper and its output force were simulated and optimized by using scientific computing software, and the three-dimensional modeling of the damper was carried out after the size was determined. On this basis and according to the design and use requirements of the damper, the finite element analysis software was used for force analysis, strength check and topology optimization of the main force components. Finally, a micro magnetorheological fluid damper suitable for wearable rehabilitation training system was designed, which has reference value for the design of lightweight, portable and intelligent rehabilitation training equipment.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Wearable devices: Perspectives on assessing and monitoring human physiological status

    This review article aims to explore the major challenges that the healthcare system is currently facing and propose a new paradigm shift that harnesses the potential of wearable devices and novel theoretical frameworks on health and disease. Lifestyle-induced diseases currently account for a significant portion of all healthcare spending, with this proportion projected to increase with population aging. Wearable devices have emerged as a key technology for implementing large-scale healthcare systems focused on disease prevention and management. Advancements in miniaturized sensors, system integration, the Internet of Things, artificial intelligence, 5G, and other technologies have enabled wearable devices to perform high-quality measurements comparable to medical devices. Through various physical, chemical, and biological sensors, wearable devices can continuously monitor physiological status information in a non-invasive or minimally invasive way, including electrocardiography, electroencephalography, respiration, blood oxygen, blood pressure, blood glucose, activity, and more. Furthermore, by combining concepts and methods from complex systems and nonlinear dynamics, we developed a novel theory of continuous dynamic physiological signal analysis—dynamical complexity. The results of dynamic signal analyses can provide crucial information for disease prevention, diagnosis, treatment, and management. Wearable devices can also serve as an important bridge connecting doctors and patients by tracking, storing, and sharing patient data with medical institutions, enabling remote or real-time health assessments of patients, and providing a basis for precision medicine and personalized treatment. Wearable devices have a promising future in the healthcare field and will be an important driving force for the transformation of the healthcare system, while also improving the health experience for individuals.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Exploratory study on quantitative analysis of nocturnal breathing patterns in patients with acute heart failure based on wearable devices

    Patients with acute heart failure (AHF) often experience dyspnea, and monitoring and quantifying their breathing patterns can provide reference information for disease and prognosis assessment. In this study, 39 AHF patients and 24 healthy subjects were included. Nighttime chest-abdominal respiratory signals were collected using wearable devices, and the differences in nocturnal breathing patterns between the two groups were quantitatively analyzed. Compared with the healthy group, the AHF group showed a higher mean breathing rate (BR_mean) [(21.03 ± 3.84) beat/min vs. (15.95 ± 3.08) beat/min, P < 0.001], and larger R_RSBI_cv [70.96% (54.34%–104.28)% vs. 58.48% (45.34%–65.95)%, P = 0.005], greater AB_ratio_cv [(22.52 ± 7.14)% vs. (17.10 ± 6.83)%, P = 0.004], and smaller SampEn (0.67 ± 0.37 vs. 1.01 ± 0.29, P < 0.001). Additionally, the mean inspiratory time (TI_mean) and expiration time (TE_mean) were shorter, TI_cv and TE_cv were greater. Furthermore, the LBI_cv was greater, while SD1 and SD2 on the Poincare plot were larger in the AHF group, all of which showed statistically significant differences. Logistic regression calibration revealed that the TI_mean reduction was a risk factor for AHF. The BR_ mean demonstrated the strongest ability to distinguish between the two groups, with an area under the curve (AUC) of 0.846. Parameters such as breathing period, amplitude, coordination, and nonlinear parameters effectively quantify abnormal breathing patterns in AHF patients. Specifically, the reduction in TI_mean serves as a risk factor for AHF, while the BR_mean distinguishes between the two groups. These findings have the potential to provide new information for the assessment of AHF patients.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Experimental study of the response of articular cartilage surface roughness to load

    Cartilage surface fibrosis is an early sign of osteoarthritis and cartilage surface damage is closely related to load. The purpose of this study was to study the relationship between cartilage surface roughness and load. By applying impact, compression and fatigue loads on fresh porcine articular cartilage, the rough value of cartilage surface was measured at an interval of 10 min each time and the change rule of roughness before and after loading was obtained. It was found that the load increased the roughness of cartilage surface and the increased value was related to the load size. The time of roughness returning to the initial condition was related to the load type and the load size. The impact load had the greatest influence on the roughness of cartilage surface, followed by the severe fatigue load, compression load and mild fatigue load. This article provides reference data for revealing the pathogenesis of early osteoarthritis and preventing and treating articular cartilage diseases.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Application status and future trend analysis of wearable devices in the field of clinical nursing

    Wearable devices, as an important component of digital health, are gradually penetrating into the clinical nursing field. This paper explores the current applications of wearable devices in the field of clinical nursing, with a focus on their significant roles in real-time monitoring of physiological parameters, disease management, functional rehabilitation exercises. Additionally, it analyzes the challenges these devices face, such as the need for standardized development, data security and privacy protection, and cost-benefit analysis. This paper also proposes measures to address these challenges, including enhancing policy formulation, promoting standardization, and fostering technological innovation, with the aim of providing valuable insights for the advancement of high-quality clinical nursing practices.

    Release date:2024-11-27 02:31 Export PDF Favorites Scan
  • Artificial intelligence in wearable electrocardiogram monitoring

    Electrocardiogram (ECG) monitoring owns important clinical value in diagnosis, prevention and rehabilitation of cardiovascular disease (CVD). With the rapid development of Internet of Things (IoT), big data, cloud computing, artificial intelligence (AI) and other advanced technologies, wearable ECG is playing an increasingly important role. With the aging process of the population, it is more and more urgent to upgrade the diagnostic mode of CVD. Using AI technology to assist the clinical analysis of long-term ECGs, and thus to improve the ability of early detection and prediction of CVD has become an important direction. Intelligent wearable ECG monitoring needs the collaboration between edge and cloud computing. Meanwhile, the clarity of medical scene is conducive for the precise implementation of wearable ECG monitoring. This paper first summarized the progress of AI-related ECG studies and the current technical orientation. Then three cases were depicted to illustrate how the AI in wearable ECG cooperate with the clinic. Finally, we demonstrated the two core issues—the reliability and worth of AI-related ECG technology and prospected the future opportunities and challenges.

    Release date:2023-12-21 03:53 Export PDF Favorites Scan
  • Application and progress of wearable devices in epilepsy monitoring, prediction, and treatment

    Epilepsy is a complex and widespread neurological disorder that has become a global public health issue. In recent years, significant progress has been made in the use of wearable devices for seizure monitoring, prediction, and treatment. This paper reviewed the applications of invasive and non-invasive wearable devices in seizure monitoring, such as subcutaneous EEG, ear-EEG, and multimodal sensors, highlighting their advantages in improving the accuracy of seizure recording. It also discussed the latest advances in the prediction and treatment of seizure using wearable devices.

    Release date:2024-08-23 04:11 Export PDF Favorites Scan
  • Research on performance optimization method of human-machine physical interaction system considering exoskeleton wearing comfort

    In order to improve the wearing comfort and bearing effectiveness of the exoskeleton, based on the prototype and working mechanism analysis of a relaxation wearable system for knee exoskeleton robot, the static optimization synthesis and its method are studied. Firstly, based on the construction of the virtual prototype model of the system, a comprehensive wearable comfort evaluation index considering the factors such as stress, deformation and the proportion of stress nodes was constructed. Secondly, based on the static simulation and evaluation index of system virtual prototype, multi-objective genetic optimization and local optimization synthesis of armor layer topology were carried out. Finally, the model reconstruction simulation data confirmed that the system had good wearing comfort. Our study provides a theoretical basis for the bearing performance and prototype construction of the subsequent wearable system.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content