Echinococcosis is a zoonotic disease that seriously threatened human health. The disease is widely distributed in China, including in Tibet Autonomous Region, Qinghai Province, Xinjiang Uygur Autonomous Region, Sichuan Province, and other places, which has become a social and economic burden in China. Human beings are mainly infected with alveolar echinococcosis (AE) and cystic echinococcosis (CE), which mainly involves liver, lung, brain, bone, and other organs or tissues. The surgical resection is the first line treatment, and antiparasitic agents therapy is the main supplementary or salvage treatment method. Currently, classic drugs mainly include albendazole and praziquantel, which use alone or in combination. There are also some attempts to treat echinococcosis, including broad-spectrum anti infective drugs such as nitrozotocin, cell proliferation inhibiting drugs such as bortezomib, metabolic drugs such as metformin, or traditional medicines such as Artemisinin. It was also suggested to adopt a cancer management model for echinococcosis, and the imaging follow-up time for CE after antiparasitic chemotherapy should be at least 3 years, and for AE should be at least 10 years. More importantly, measures such as education and vaccine inoculation should be taken to actively prevent and control the occurrence and spread of echinococcosis.
ObjectiveTo explore the clinical application of variant associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) combined with inferior vena cava reconstruction for end stage hepatic alveolar echinococcosis (HAE).MethodThe clinical data of one case with HAE who treated in Organ Transplantation Center of Sichuan Provincial People’s Hospital in November 2017 was analyzed retrospectively.ResultsComputed tomography revealed that the three hepatic veins and retrohepatic inferior vena cava were invaded by multiple and giant hydatid lesions. Only the segment 6 retained the complete portal vein and hepatic vein return branch. Remnant liver volume/standard liver volume (RLV/SLV) of this patient was 24.9%. Surgical exploration was performed after preoperative examination. In the first stage, ligation of the left portal vein and the right anterior lobe portal vein were performed to increase portal blood supply at S6 while partial split of the liver. The patient recovered well after operation without complications such as bile leakage and infection. Six months after the first stage surgery, the second stage surgery was performed, and RLV/SLV measured before surgery was 48.3%. S1–5/S7–8 were completely removed and the hepatic inferior vena cava was reconstructed with artificial blood vessels. The patient was discharged on 10 days after operation, and there was no complications and relapses occurred during the 18 months follow-up period.ConclusionsVariant ALPPS combined with inferior vena cava reconstruction is an effective attempt to treat end stage HAE with multiple and giant hydatid lesions and insufficient RLV.
ObjectiveTo explore value of partial liver preservation in situ for ex-vivo liver resection and auxiliatry autologous liver transplantation in end-stage hepatic alveolar echinococcosis.MethodsThe clinical data of one patient with end-stage hepatic alveolar echinococcosis treated with auxiliatry autologous liver transplantation combined partial liver preservation in situ were analyzed retrospectively. This patient was admitted on January 2019. During the auxiliatry autologous liver transplantation procedure, the S1, S4-S8 segments of the liver were resected for mass dissection, whereas the S2 and S3 segments of left liver were preserved in situ.ResultsThe preoperative evaluation and intraoperative exploration indicated that the mass located in the S4, S5, S8 segments, which was adjacent to the first hepatic portal and involved the anterior wall of posterior inferior vena cava, middle hepatic veins, the opening of right hepatic veins and the right wall of left hepatic veins. Based on the " in situ first” principle, the left lesion was slit using the anterior approach, the left hepatic vein was repaired and the S2 and S3 segments were preserved in situ. Then, the right lesion to involved hepatic vein was slit along the right interlobar fissure. The right hepatic artery, right portal vein and right bile duct were divided separately. The S1 and S4-S8 segments were removed completely. Next, the mass was resected, the out flow of the right liver was reconstructed using the allogeneic veins during the ex-vivo liver resection. Then, the auxiliatry autologous right liver transplantation was initiated by the wide-caliber hepatic vein-artificial inferior vena cava anastomosis. The surgical procedures lasted for 12 h, and the intraoperative bleeding was approximately 800 mL. The patient was routinely treated and smoothly recovered after the operation.ConclusionsProcedure of auxiliatry autologous liver transplantation preserved part functional liver in situ during ex-vivo resection, which could maintain stability of systemic and portal vein circulation, hold part liver function during operation, preserve functional liver furthest, and reduce risk of hepatic failure, is an effective attempt for end stage hepatic alveolar echinococcosis.
ObjectiveTo summarize the key operative points and efficacy of ex-vivo ex-vivo liver resection and autologous liver transplantation (ELRA) using various vascular materials for hepatic vein reconstruction in the treatment of end-stage hepatic alveolar echinococcosis (HAE). MethodThe clinicopathologic data of a patient with end-stage HAE who underwent ELRA combined with complex hepatic vein reconstruction were retrospectively analyzed. ResultsThe patient was a 60-year-old male who was admitted to the Sichuan Provincial People’s Hospital due to giant alveolar hydatid in the liver, with a body weight of 60 kg and a standard liver volume of 1 024.5 mL. The imaging showed that the hydatid invaded the first and second hepatic portals, middle hepatic vein, left hepatic vein, and retrohepatic inferior vena cava. The three-dimensional reconstruction of CT showed that the residual liver volume was 1 270.6 mL. The patient received supportive treatment after admission and underwent ELRA following strict evaluation. Intraoperatively, it was found that the multiple hepatic veins and retrohepatic inferior vena cava were widely invaded. The liver was split in vivo and the mass was excised ex vivo by “in vivo first” principle. The hepatic vein was repaired and reconstructed into a wide mouth outflow tract using allogeneic veins, autologous inferior mesenteric vein, and hepatic round ligaments, then performed the autotransplantation by wide mouth outflow-artificial inferior vena cava anastomosis (end to side). The operative time was 16 h, and the intraoperative blood loss was approximately 2 000 mL. FK506 was orally administered after operation, and low-molecular-weight heparin sodium was administered 24 h later for anticoagulation. The patient was returned to the general ward on the 6th day after the operation, and the enhanced CT scan showed that the hepatic outflow tract was unobstructed, without stenosis and thrombosis, and the patient was discharged on day 18 after the operation. The patient was pathologically diagnosed with alveolar echinococcosis. ConclusionsFrom the results of this case, combination of multiple vascular materials to reconstruct the hepatic outflow tract is an optional procedure for ELRA in treatment of end-stage HAE. Strict preoperative evaluation, skillful vascular anastomosis technique, and postoperative anticoagulation are important measures to maintain patency of postoperative reconstruction vessel.
Objective To explore the effect of “in situ first” ex vivo liver resection and autologous liver transplantation (ELRA) for end stage hepatic alveolar echinococcosis (HAE). Methods The clinicopathologic data of 85 end stage HAE cases were initially scheduled underwent ELRA from June 2019 to May 2022 in the Sichuan Provincial People’s Hospital were collected retrospectively. The included cases were operated under “in situ first” ERLA principle. The analyzed data included the final surgical style, operative time, time of anhepatic phase and intraoperative blood transfusion volume for ELRA cases. Results All the included 85 cases underwent radical HAE lesions resection and without perioperative death occurred. According to the principle of “in situ first”, 57 cases underwent HAE lesions resection combined vascular reconstruction without ex vivo liver resection (in situ resection group); 1 case underwent auxiliary partial autologous liver transplantation, and 27 cases underwent ERLA procedures (ELRA group). In the in situ resection group, the operative time was 210–750 min, (380±134)min, and the intraoperative blood transfusion was 0–3 250 mL with a median of 0 mL. In the ELRA group, the operative time was 450–1 445 min, (852±203) min, and the intraoperative blood transfusion was 0–6 800 mL with a median of 1 960 mL. The operative time and the amount of blood transfusion in the ELRA group were longer or more than those in the in situ resection group. The time of anhepatic phase for the ELRA group was 60–480 min, (231±83) min. On the 5th day after operation, except that the total bilirubin and direct bilirubin in the ELRA group were higher than those in the in situ resection group, the other indexes of liver function were similar between the two groups. The postoperative stay in ICU and the total postoperative hospital stay in the ELRA group were longer than those in the in situ resection group. Conclusions The advantage of “in situ first” ERLA principle for end stage HAE patients include resecting the HAE lesions radically without ex vivo liver resection and alleviating the hepatic ischemia and reperfusion injury. For the inevasible ELRA cases, “in situ first” principle could shorten the anhepatic phase and reduce intraoperative blood loss, and turn some cases to auxiliary partial autologous liver transplantation, which will reduce the risk of postoperative hepatic failure.
Objective To determine the value of contrast-enhanced ultrasound (CEUS) in the differentiation of primary liver cancer (PLC) and hepatic alveolar echinococcosis (HAE). Methods The data of 56 patients with PLC or HAE were collected between January 2010 and May 2015. Grayscale and CEUS features of the patients were analyzed retrospectively. The frequency of each imaging finding, including calcification, arterial enhancement, and internal enhancement were evaluated and compared. Results Statistically significant difference of the proportion of gender and age were detected between the two groups (P=0.013, 0.002). Thirty-eight PLC lesions were detected in 32 patients. The diameters of PLC lesions were 3-10 cm with an average of (5.6±2.1) cm. Thirty-two HAE lesions were found in 24 patients. The diameters of HAE lesions were 4-12 cm with an average of (9.1±4.4) cm. Statistically significant difference of lesion size and the incidence rate of calcification (5.3% vs. 75.0%) were seen between PLC and HAE (P<0.001). Peripheral enhancement were seen in 100.0% (38/38) PLC lesions, including 84.2% (32/38) hyperenhancement and 15.8% (6/38) dendritic hyperenhancement. All PLC lesions demonstrated hypoenhancement in late phase. Irregular peripherally hyperenhancement both in arterial and late phase were detected in 43.8% (14/32) HAE lesions. The other 56.2% (18/32) HAE lesions showed no peripheral enhancement both in arterial and late phase. No internal enhancement were seen in HAE lesions. The presence of arterial enhancement (100.0% vs. 43.8%) and absence of internal enhancement (0 vs. 100.0%) were significantly different between PLC and HAE (P<0.001). Conclusions PLC is predicted by arterial phase hyperenhancement and late phase hypoenhancement on CEUS. HAE is predicted with calcification on baseline sonography and internal non-enhancement on CEUS. Arterial phase enhancement is less common and less intensive in HAE than in PLC which also contributes to the differentiation of these lesions.
ObjectiveTo explore the clinical application of in vivo hepatectomy with preservation of retrohepatic inferior vena cava (IVC) for hepatic alveolar echinococcosis (HAE) with the invasion of IVC. MethodsThe clinicopathologic data of a complicated HAE patient with large lesion (maximum cross-section 12.6 cm×9.6 cm), infiltrative growth, unclear boundary with surrounding tissues, and invasions of diaphragm and IVC (invasion length up to 4.6 cm) admitted to the Department of Liver Surgery in the West China Hospital of Sichuan University in December 2021 was retrospectively collected. The three-dimensional reconstruction of the liver model was performed by Mimics Medical 21.0 software before operation. The invading IVC of the right liver lesion was measured and the resection was simulated. During the operation, the HAE lesion and the affected IVC were gradually separated from IVC by the hemostatic forceps, and the residual lesions were gradually removed. ResultsIn this patient, the HAE lesion of right liver was resected, the IVC was entirely preserved, and the resection of liver was consistent with the preoperative three-dimensional reconstruction plan. The operation time was 275 min, the bleeding was approximately 500 mL. On the first day after the operation, the alanine aminotransferase and aspartate aminotransferase were increased, no obvious abnormalities were observed in the plasma albumin and bilirubin, the patient recovered and was discharged on the seventh day after the operation. No complications occurred after the operation, and no recurrence or metastasis of HAE was observed during follow-up period. ConclusionsHepatectomy with preservation of retrohepatic IVC for HAE with invasion of IVC is safe and effective. Taking albendazole regularly after surgery will help maintain disease-free survival.
Objective To explore the correlations between the time of tracheal extubation and the intraoperative basic factors of ex vivo liver resection followed by autotransplantation in patients with advanced hepatic alveolar echinococcosis (HAE), and analyze the change trend of blood gas analysis during operation. Methods The data of 24 patients with advanced HAE who underwent ex vivo liver resection followed by autotransplantation in West China Hospital of Sichuan University between February 2014 and August 2017 were retrospectively analyzed. Results There were significant correlations between the extubation time and the duration of anesthesia (r=0.472, P=0.031), the amount of bleeding (r=0.524, P=0.015), the amount of erythrocyte suspensions infusion (r=0.627, P=0.002), and the amount of plasma infusion (r=0.617, P=0.003). There was no statistical difference in extubation time between patients with and without pulmonary complications in 3 months postoperatively [(23.74±15.84), (15.52±19.40) h, P=0.327]. Compared with those arterial blood gas results before the interruption, the pH value, blood glucose, lactic acid and base excess were statistically significantly different (P<0.05) at each time point after the interruption. Blood potassium increased at the end of operation compared with that before interruption (P<0.05); and the free calcium after blocking and opening increased with a temporary decrease (P<0.05); the hemoglobin decreased significantly after interruption and clamping (P<0.05). Conclusions Anesthesia length and bleeding should be reduced in ex vivo liver resection followed by autotransplantation, thus the extubation time would be shortened and the prognosis of the patients might be improved. Because of the longer anhepatic phase, the blood gas analysis varies largely. During operation, blood gas analysis and monitoring should be strengthened, and the acid-base balance and electrolytes should be maintained in time.
ObjectiveTo evaluate roles and advantages of magnetic resonance imaging (MRI) and compute.tomography (CT) in preoperative assessment for hepatic alveolar echinococcosis. MethodMRI and CT scan imaging data of 60 patients with hepatic alveolar echinococcosis underwent radical surgery were retrospectively analyzed. ResultsMRI scanning could accurately identify the peripheral zone and marginal zone of hepatic alveolar echinococcosis lesions, and CT could not accurately show the above structures. In assessment of anatomic relation between vascular and lesions, MRI findings of 52 cases were in full compliance with corresponding intraoperative findings, and 8 cases were partial compliant. However, CT findings of 35 cases were in full compliance with corresponding intraoperative findings, 13 cases were partial compliant, and 12 cases were not compliant at all. In assessment of anatomic relation between biliary and lesions, MRCP could clearly show the bile duct, bile duct stenosis location and degree; CT scanning could only show widened bile duct, but could not accurately judge bile duct dilatation. ConclusionsMRI exerts some obvious advantages in preoperative evaluation of hepatic alveolar echinococcosis, and could accurately find relation between lesions and vascular or biliary system. MRI should be used as routine examination for patients with hepatic alveolar echinococcosis.
ObjectiveTo explore the efficiency of two-stage hepatectomy applicated in complex alveolar echinococcosis. MethodThe clinical data of one case who suffered from complicated alveolar echinococcosis with multiple lesions and then treated with two-stage hepatectomy were analyzed retrospectively. ResultsPreoperative enhanced CT revealed that the hydatid lesion with irregular shape, measuring 14.1 cm×9.2 cm, invaded several segments including left medial lobe and right anterior lobe of liver and the right branch of portal vein and medium hepatic vein were entirely surrounded by it. After preoperative examination surgical exploration was performed, two larger lesions measuring 6 cm×5 cm×4 cm and 5 cm×4 cm×4 cm respectively were found in caudate lobe of liver, three smaller lesions were found in the right and left lobe of liver, among which two measured 2 cm×2 cm×1 cm in the right lobe and one measured 3 cm×2 cm×1 cm in the left lobe. Mesohepatectomy was performed in the first stage, the lesion in left medial lobe and right anterior lobe of liver and the right anterior branch of portal vein were resected during the procedure. The patient recovered well after the operation without complications such as bile leakage or hemorrhage observed. The second stage surgery was performed at three months after operation, the computed tomograph before the surgery revealed that the remained lesions in the right lobe of liver did not proceed obviously and the left lateral external lobe of liver regenerated significantly. In the second stage, the right anterior lobe and part of the right posterior lobe of liver were resected. The patient was discharged on 7 days after operation, and there was no complication and relapse during the 7 months of follow-up period. ConclusionTwo-stage hepatectomy applicated in treating complicated alveolar echinococcosis with multiple lesions is safe and feasible, offering a choice with smaller trauma, lower expense and less complications for patients compared with liver transplantation.