ObjectiveTo investigate the in vitro effect of pseudolaric acid B (PAB) on apoptosis of protoscolece cells and its regulatory effects on angiogenesis and cell apoptosis in the the lesion-host microenvironment tissue in vivo, as well as its possible mechanisms, in order to provide a basis for the clinical development of new alternative drugs for Echinococcus multilocularis. MethodsIn vitro experiments: the protoscoleces, vesicles, germinal cells, human foreskin fibroblasts (HFFs) and normal human liver cells were treated with different concentrations of PAB (0, 2.5, 5, 10, 20, 40, 80, 160 and 320 μmol/L) for 7, 5, 5, 5 and 5 days, then evaluated the survival rate of the protoscoleces, the release level of phosphoglucose isomerase (PGI) from the vesicles, the viability of the germinal cells, as well as the viability of HFFs and normal human liver cells. The protoscoleces and vesicles were fixed with 2.5% glutaraldehyde and used for scanning electron microscopy and transmission electron microscopy observation. Animal experiments: the protoscoleces were isolated from the abdominal lesions of the protected gerbils, and then infected 18 C57BL/6J mice by intraperitoneal injection to establish models, dividing into 3 groups with 6 mice in each group. The model group was given 0.3 mL of PBS by gavage daily, the albendazole (ABZ) group was given 0.3 mL ABZ (100 mg/kg) daily by gavage, the PAB group was given 0.3 mL of PAB (40 mg/kg) by gavage daily. After continuous gavage for 6 weeks, the lesion host microenvironment tissue was taken and ELISA was used to detect the expression levels of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS) and cysteinyl aspartate specific proteinase3 (caspase3), the expression levels of nitric oxide (NO) was detected using a biochemical detection kit, Western blot was used to detect the expression levels of BCL2-associated X protein (Bax), B-cell lymphoma-2 (Bcl2), caspase3, cleaved-caspase3, VEGF, vascular endothelial growth factor receptor 2 (VEGFR2), phosphatidylinositol 3 kinase (PI3K), phosphorylated PI3K (p-PI3K), protein kinase B (AKT) and phosphorylated AKI (p-AKT) protein. ResultsIn vitro experiments: the protoscoleces of Echinococcus multilocularis were cultured with different concentrations of PAB for 7 days in vitro, the protoscoleces of 40, 80, 160 and 320 μmol/L group all died after 6, 4, 2 and 1 day, respectively; PAB exhibited a certain time and concentration dependence on the protoscoleces of Echinococcus multilocularis. After PAB treatment, the release of PGI in culture supernatant of Echinococcus multilocularis gradually increased with the increase of PAB concentration [concentration for 50% of maximal effect value was (24.40±1.42) μmol/L], the vitality of germinal cells was significantly inhibited [half maximal inhibitory concentration value was (15.94±2.55) μmol/L]. PAB had no significant toxicity to mammalian cells. When 20 μmol/L PAB intervention in the protoscoleces for 3 days, the expression levels of Bax and caspase3 proteins were upregulated, while the expression level of Bcl2 protein was downregulated. Animal experiments: compared with the model group, the wet weight of lesions in the PAB and ABZ groups decreased (P<0.01), and the inhibition rates of lesion growth in the PAB and ABZ groups were 91.03% and 74.44%, respectively. The expression of proliferation and angiogenesis indicators (Ki67, CD34, VEGF, VEGFR2, eNOS, NO) were downregulated in the lesion host microenvironment tissues of mice in the ABZ and PAB groups (P<0.05), while the expression of apoptosis related proteins (caspase3, cleaved-caspase3 and Bax) were upregulated and the expression of PI3K/AKT signaling pathway related proteins (p-PI3K and p-AKT) were downregulated (P<0.05). ConclusionPAB has a strong in vitro and in vivo effect against Echinococcus multilocularis, and its mechanism may be related to the inhibition of PI3K/AKT signaling pathway, leading to increased apoptosis and decreased angiogenesis.
【Abstract】Objective To introduce the possible effect of endogenous angiogenesis inhibitive factors in the therapy of hepatocarcinoma. Methods Recent relevant literatures were reviewed. ResultsEndogenous angiogenesis inhibitive factors can suppress the growth of tumor blood vessels, which might head off the development and metastasis of hepatocarcinoma effectively. This might provide a new approach to the therapy of hepatocarcinoma. ConclusionRecent studies on endogenous angiogenesis inhibitive factors will be helpful in the prevention and treatment of hepatocarcinoma.
ObjectiveTo explore the antitumor effect of tumor vaccine fused from dendritic cells (DC) and Walker-256 cancer cells on implanted liver cancer in rats and the related mechanism of inhibition for tumor angiogenesis. MethodsWalker-256 cancer cells and mature DC were fused by 50% polyethylene glycol method for preparation of DC-Walker-256 fusion vaccines. Implanted liver cancer models were established through operations on healthy male SD rats at the age of 6-8 weeks. All the rats were divided into four groups, and rats in each group were injected subcutanely with fusion vaccine (group), mixed cultured cells (group), simple DC (group), and PBS (blank control group), respectively. On 28 d after making model, the rats were put to death, the tumor was observed and pathological essays were prepared. All rats’ spleens were collected and prepared into lymphocyte to detect antigenic specificity cytotoxic T lymphocyte (CTL) by enzymelinked immunosorbent spot (ELISPOT) method. The expressions of VEGF, ANG-1, ANG-2, and MVD were detected by immunohistochemistry. ResultsThe numbers of rats survived in the fusion vaccine group, mixed culture cells group, simple DC group, and blank control group was 8, 5, 6, and 3, respectively. The rats in the other three groups except for fusion vaccine group were manifested as inaction, anorexia, and gloomy fur in some degree as well as ascites. The tumorigenesis was found in all survival rats except for two in the fusion vaccine group. The weight of liver tumors of rats in the fusion vaccine group 〔(32.4±9.2) g〕 was significantly lighter than that in the mixed culture cells group 〔(67.3±5.1) g, P=0.031〕, simple DC group 〔(75.0±8.3) g, P=0.019〕, and blank control group 〔(86.6±10.5) g, P=0.008〕, respectively. The number of tumorspecific CTL of rats in the fusion vaccine group was also significantly higher than that in the other three groups (P=0.019, P=0.025, and P=0.001, respectively). The MVD of tumor tissue in the fusion vaccine group was (24.12±2.32) vessels/HP, which was significantly lower than that in the mixed culture cells group 〔(40.34±1.29) vessels/HP, P=0.025〕, simple DC group 〔(42.36±3.16) vessels/HP, P=0.035〕, and blank control group 〔(56.48±5.16) vessels/HP, P=0.006〕, respectively. The MVD of tumor tissue in the mixed cultured cells group and simple DC group was similar (P=0.165), however, which was significantly lower than that in the blank control group (P=0.040 and P=0.043). The positive rate of VEGFA protein expression was 23.2% in the fusion vaccine group, which was significantly lower than that in the mixed culture cells group (42.5%, P=0.031), simple DC group (61.3%, P=0.019), and blank control group (89.6%, P=0.003), respectively. The positive rate of VEGF-A protein expression in the mixed cultured cells and simple DC groups was similar (P=0.089), however, which was significantly lower than that in the blank control group (P=0.027 and P=0.038). The positive rate of ANG-1 protein expression in the fusion vaccine group (43.2%) was not different from that in the mixed culture cells group (46.3%, P=0.292), simple DC group (51.3%, P=0.183), or blank control group (49.6%, P=0.179), respectively, and the difference of pairwise comparison in latter three groups was not significant (P=0.242, P=0.347, and P=0.182). The positive rate of ANG2 protein expression was 19.2% in the fusion vaccine group, which was significantly lower than that in the mixed culture cells group (62.3%, P=0.007), simple DC group (67.3%, P=0.005), and blank control group (71.6%, P=0.004), respectively, however, the difference of pairwise comparison in latter three groups was not significant (P=0.634, P=0.483, and P=0.379). ConclusionFused vaccine can induce CD8+ CTL aiming at tumor cells and establish the effective antitumor immunity in vivo and also downregulate the level of VEGF and ANG-2 to suppress tumor angiogenesis and thereby achieve the purpose of curing tumor.
【Abstract】Objective To understand the features of lymphatic vessel, and to summarize the foundation and mechanism of the promotion and inhibition of tumor lymphangiogenesis recorded on the current studies of animal experiments and clinical researches. Methods The related literatures of the structural features of lymphatic vessel, lymphatic endothelial molecular markers, the origin of lymphatic tumors, the molecular mechanisms and regulatory factors were reviewed, and the relationship between tumor lymphangiogenesis and lymphatic metastasis, the treatment targeting at the formation of the anti-tumor lymphatic vessel and its existing problems were also analyzed. Results Hyperplasia of lymphatic vessels occurred during the process of tumor formation and progression. The structural features of the lymphatic vessels in the tumor were conducive to tumor lymphatic metastasis. In recent years, methods of anti-lymphangiogenesis and inhibition of tumor lymphatic metastasis had achieved considerable success in animal experiments. However, there were still a lot of problems need to be solved. Conclusion Tumor lymphangiogenesis has a significantly positive correlation between tumor lymphatic metastasis and patients’ prognosis, which may indicate that treatment against the formation of tumor lymphatic vessel maybe effective.
Objective To study the effect of dimethyloxalylglycine (DMOG) on angiogenesis in Choke Ⅱ zone of rats cross-zone perforator flaps and its mechanism. Methods One hundred and twenty-six adult male Sprague Dawley rats were randomly divided into DMOG group, YC-1 group, and control group, with 42 rats in each group. Cross-zone perforator flap model with size of 12 cm×3 cm was made on the back of rats in the three groups. DMOG group was intraperitoneally injected with DMOG (40 mg/kg) at 1 day before operation, 2 hours before operation, and 1, 2, and 3 days after operation; YC-1 group and control group were intraperitoneally injected with YC-1 (10 mg/kg) and the same amount of normal saline at the same time points, respectively. The survival of flap was observed after operation. At 7 days after operation, the survival area of flap in each group was measured and the survival rate of flap was calculated. Flap transmittance test, gelatin-lead oxide angiography, and HE staining were used to observed the angiogenesis in the Choke Ⅱ zone of flaps in each group. Immunohistochemical staining and Western blot were used to detect the expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-1α) in Choke Ⅱ zone of flaps in each group. The expressions of VEGF and HIF-1α were also determined by ELISA at 3, 5, and 7 days. Results At 7 days after operation, there was no obvious necrosis at the distal end of the flap in DMOG group, while necrosis occurred in both the control group and YC-1 group, mainly located at the distal end. The flap survival rate of DMOG group was 90.28%±1.37%, which was significantly higher than that of YC-1 group (84.28%±1.45%) and control group (85.83%±1.60%) (P<0.05). DMOG group had more angiogenesis in Choke Ⅱ zone and the vascular structure was clear and complete. In YC-1 group and control group, the vessels in Choke Ⅱ zone was less and the vascular structure was disordered. The number of vessels was (25.56±1.29)/field in the DMOG group, which was significantly higher than that in the YC-1 group [(7.38±0.54)/field] and the control group [(14.48±0.91)/field] (P<0.05). At 3, 5, and 7 days after operation, HIF-1α and VEGF expressions in ChokeⅡzone of DMOG group were significantly higher than those in YC-1 group and control group (P<0.05). ConclusionDMOG can promote angiogenesis in Choke Ⅱ zone, accelerate the early angiogenesis of the flap, improve the microcirculation and blood supply in the potential zone of the flap, reduce the injury of flap ischemia and hypoxia, and increase the survival rate of the flap.
ObjectiveTo investigate the effect of transverse tibial bone transport on the expression of angiogenesis-related growth factors in the serum of diabetic foot patients.MethodsBetween January 2018 and December 2018, 10 patients who suffered from diabetes mellitus accompanied with Wagner stage 4 diabetic foot underwent transverse tibial bone transport. There were 5 males and 5 females with an average age of 59.2 years (range, 51-70 years). The duration of diabetes was 2-60 months, with an average of 24.2 months. The duration of diabetic foot was 30-120 days, with an average of 54.1 days. Peripheral venous blood was taken at 1 day before operation and at 1, 4, 11, 18, 28, and 35 days after operation. The serum was centrifuged and subjected to ELISA test to detect the expression levels of serum vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and platelet-derived growth factor (PDGF).ResultsThe levels of serum VEGF, bFGF, and EGF increased rapidly at 11 days after operation, and the expression levels of the factors at 11, 18, 28, and 35 days were significantly higher than those before operation (P<0.05). The expression level of PDGF increased suddenly at 18 days after operation, and the expression level of PDGF at 18, 28, and 35 days was significantly higher than that before operation (P<0.05).ConclusionTransverse tibial bone transport for the treatment of diabetic foot can significantly increase the expression of serum angiogenesis-related growth factors in early stage, which may be the mechanism of promoting the healing of diabetic foot wounds.
ObjectiveTo review the research progress on the role and mechanism of matrix stiffness in regulating endothelial cell sprouting. MethodsThe related literature at home and abroad in recent years was extensively reviewed, and the behaviors of matrix stiffness related endothelial cell sprouting in different cell cultivation conditions were analyzed, and the specific molecular mechanism of matrix stiffness regulating related signal pathways in endothelial cell sprouting was elaborated. Results In two-dimensional cell cultivation condition, increase of matrix stiffness stimulates endothelial cell sprouting within a certain range. However, in three-dimensional cell cultivation condition, the detailed function of matrix stiffness in regulating endothelial cell sprouting and angiogenesis are still unclear. At present, the research of the related molecular mechanism mainly focuses on YAP/TAZ, and roles of its upstream and downstream signal molecules. Matrix stiffness can regulate endothelial cell sprouting by activating or inhibiting signal pathways to participate in vascularization. ConclusionMatrix stiffness plays a vital role in regulating endothelial cell sprouting, but its specific role and molecular mechanism in different environments remain ambiguous and need further study.
Objective To summarize the research progress of gene-based therapeutic angiogenesis in lower limb ischemia, so as to provide a new method for non-invasive treatment of lower limb ischemia. Method The literatures on studies of gene-based therapeutic angiogenesis in lower limb ischemia in recent years were read and reviewed. Results The incidence of peripheral arterial disease had been increasing annually. How to effectively reduce the amputation rate and mortality rate of patients with critical limb ischemia was still a clinical problem that needs to be solved urgently. A large number of basic and clinical studies had shown that gene-based therapeutic angiogenesis could effectively induce angiogenesis and collateral circulation in ischemic tissue of lower limb, leading to the significant improvements of blood perfusion in ischemic areas. Additionally, the construction of many kinds of new non-viral gene delivery vectors could also improve the safety and effectiveness of gene therapy to a certain extent. Conclusion Although promising therapeutic effect of gene-based therapeutic angiogenesis brings new ideas and strategies for the treatment of lower limb ischemia, issues still exist that have not been solved.
To study the potential molecular mechanism of tumor angiogenesis in its microenvironment, we investigated the effects of HepG2 conditioned medium on the proliferation of vascular endothelial cell and vascular angiogenesis in our laboratory. Human umbilical vein endothelial EA.hy926 cells were co-cultured with HepG2 conditioned medium in vitro. The proliferation and the tubulogenesis of EA.hy926 cells were detected by teramethylazo salt azole (MTT) and tube formation assay, respectively. The results showed that the survival rate of the EA.hy926 cells was significantly increased under the co-culture condition. HepG2 conditioned medium also enhanced the angiogenesis ability of EA.hy926 cells. In addition, the expressions of intracellular VEGF and extracellular VEGFR (Flk-1) were regulated upward in a time-dependent manner. In conclusion, the proliferation of vascular endothelial cells and Vascula angiogenesis were improved under the condition of indirect co-culture.
Objective To summarize the regulatory effect of non-coding RNA (ncRNA) on type H vessels angiogenesis of bone. Methods Recent domestic and foreign related literature about the regulation of ncRNA in type H vessels angiogenesis was widely reviewed and summarized. ResultsType H vessels is a special subtype of bone vessels with the ability to couple bone formation. At present, the research on ncRNA regulating type H vessels angiogenesis in bone diseases mainly focuses on microRNA, long ncRNA, and small interfering RNA, which can affect the expressions of hypoxia inducible factor 1α, platelet derived growth factor BB, slit guidance ligand 3, and other factors through their own unique ways of action, thus regulating type H vessels angiogenesis and participating in the occurrence and development of bone diseases. ConclusionAt present, the mechanism of ncRNA regulating bone type H vessels angiogenesis has been preliminarily explored. With the deepening of research, ncRNA is expected to be a new target for the diagnosis and treatment of vascular related bone diseases.