Objective To automatically segment diabetic retinal exudation features from deep learning color fundus images. Methods An applied study. The method of this study is based on the U-shaped network model of the Indian Diabetic Retinopathy Image Dataset (IDRID) dataset, introduces deep residual convolution into the encoding and decoding stages, which can effectively extract seepage depth features, solve overfitting and feature interference problems, and improve the model's feature expression ability and lightweight performance. In addition, by introducing an improved context extraction module, the model can capture a wider range of feature information, enhance the perception ability of retinal lesions, and perform excellently in capturing small details and blurred edges. Finally, the introduction of convolutional triple attention mechanism allows the model to automatically learn feature weights, focus on important features, and extract useful information from multiple scales. Accuracy, recall, Dice coefficient, accuracy and sensitivity were used to evaluate the ability of the model to detect and segment the automatic retinal exudation features of diabetic patients in color fundus images. Results After applying this method, the accuracy, recall, dice coefficient, accuracy and sensitivity of the improved model on the IDRID dataset reached 81.56%, 99.54%, 69.32%, 65.36% and 78.33%, respectively. Compared with the original model, the accuracy and Dice index of the improved model are increased by 2.35% , 3.35% respectively. Conclusion The segmentation method based on U-shaped network can automatically detect and segment the retinal exudation features of fundus images of diabetic patients, which is of great significance for assisting doctors to diagnose diseases more accurately.
Recent studies have introduced attention models for medical visual question answering (MVQA). In medical research, not only is the modeling of “visual attention” crucial, but the modeling of “question attention” is equally significant. To facilitate bidirectional reasoning in the attention processes involving medical images and questions, a new MVQA architecture, named MCAN, has been proposed. This architecture incorporated a cross-modal co-attention network, FCAF, which identifies key words in questions and principal parts in images. Through a meta-learning channel attention module (MLCA), weights were adaptively assigned to each word and region, reflecting the model’s focus on specific words and regions during reasoning. Additionally, this study specially designed and developed a medical domain-specific word embedding model, Med-GloVe, to further enhance the model’s accuracy and practical value. Experimental results indicated that MCAN proposed in this study improved the accuracy by 7.7% on free-form questions in the Path-VQA dataset, and by 4.4% on closed-form questions in the VQA-RAD dataset, which effectively improves the accuracy of the medical vision question answer.
Due to the high dimensionality and complexity of the data, the analysis of spatial transcriptome data has been a challenging problem. Meanwhile, cluster analysis is the core issue of the analysis of spatial transcriptome data. In this article, a deep learning approach is proposed based on graph attention networks for clustering analysis of spatial transcriptome data. Our method first enhances the spatial transcriptome data, then uses graph attention networks to extract features from nodes, and finally uses the Leiden algorithm for clustering analysis. Compared with the traditional non-spatial and spatial clustering methods, our method has better performance in data analysis through the clustering evaluation index. The experimental results show that the proposed method can effectively cluster spatial transcriptome data and identify different spatial domains, which provides a new tool for studying spatial transcriptome data.
Precise segmentation of lung field is a crucial step in chest radiographic computer-aided diagnosis system. With the development of deep learning, fully convolutional network based models for lung field segmentation have achieved great effect but are poor at accurate identification of the boundary and preserving lung field consistency. To solve this problem, this paper proposed a lung segmentation algorithm based on non-local attention and multi-task learning. Firstly, an encoder-decoder convolutional network based on residual connection was used to extract multi-scale context and predict the boundary of lung. Secondly, a non-local attention mechanism to capture the long-range dependencies between pixels in the boundary regions and global context was proposed to enrich feature of inconsistent region. Thirdly, a multi-task learning to predict lung field based on the enriched feature was conducted. Finally, experiments to evaluate this algorithm were performed on JSRT and Montgomery dataset. The maximum improvement of Dice coefficient and accuracy were 1.99% and 2.27%, respectively, comparing with other representative algorithms. Results show that by enhancing the attention of boundary, this algorithm can improve the accuracy and reduce false segmentation.
Attention deficit/hyperactivity disorder (ADHD) is a behavioral disorder syndrome found mainly in school-age population. At present, the diagnosis of ADHD mainly depends on the subjective methods, leading to the high rate of misdiagnosis and missed-diagnosis. To solve these problems, we proposed an algorithm for classifying ADHD objectively based on convolutional neural network. At first, preprocessing steps, including skull stripping, Gaussian kernel smoothing, et al., were applied to brain magnetic resonance imaging (MRI). Then, coarse segmentation was used for selecting the right caudate nucleus, left precuneus, and left superior frontal gyrus region. Finally, a 3 level convolutional neural network was used for classification. Experimental results showed that the proposed algorithm was capable of classifying ADHD and normal groups effectively, the classification accuracies obtained by the right caudate nucleus and the left precuneus brain regions were greater than the highest classification accuracy (62.52%) in the ADHD-200 competition, and among 3 brain regions in ADHD and the normal groups, the classification accuracy from the right caudate nucleus was the highest. It is well concluded that the method for classification of ADHD and normal groups proposed in this paper utilizing the coarse segmentation and deep learning is a useful method for the purpose. The classification accuracy of the proposed method is high, and the calculation is simple. And the method is able to extract the unobvious image features better, and can overcome the shortcomings of traditional methods of MRI brain area segmentation, which are time-consuming and highly complicate. The method provides an objective diagnosis approach for ADHD.
Joint attention deficit is one of the core disorders in children with autism, which seriously affects the development of multiple basic skills such as language and communication. Virtual reality scene intervention has great potential in improving joint attention skills in children with autism due to its good interactivity and immersion. This article reviewed the application of virtual reality based social and nonsocial scenarios in training joint attention skills for children with autism in recent years, summarized the problems and challenges of this intervention method, and proposed a new joint paradigm for social scenario assessment and nonsocial scenario training. Finally, it looked forward to the future development and application prospects of virtual reality technology in joint attention skill training for children with autism.
The aim of this study is to evaluate the effect of laparoscopic simulation training with different attention. Attention was appraised using the sample entropy and θ/β value, which were calculated according to electroencephalograph (EEG) signal collected with BrainLink. The effect of laparoscopic simulation training was evaluated using the completion time, error number and fixation number, which were calculated according to eye movement signal collected with Tobii eye tracker. Twenty volunteers were recruited in this study. Those with the sample entropy lower than 0.77 were classified into group A and those higher than 0.77 into group B. The results showed that the sample entropy of group A was lower than that of group B, and fluctuations of A were more steady. However, the sample entropy of group B showed steady fluctuations in the first five trainings, and then demonstrated relatively dramatic fluctuates in the later five trainings. Compared with that of group B, the θ/β value of group A was smaller and shows steady fluctuations. Group A has a shorter completion time, less errors and faster decrease of fixation number. Therefore, this study reached the following conclusion that the attention of the trainees would affect the training effect. Members in group A, who had a higher attention were more efficient and faster training. For those in group B, although their training skills have been improved, they needed a longer time to reach a plateau.
Objective To recognize the different phases of Korotkoff sounds through deep learning technology, so as to improve the accuracy of blood pressure measurement in different populations. Methods A classification model of the Korotkoff sounds phases was designed, which fused attention mechanism (Attention), residual network (ResNet) and bidirectional long short-term memory (BiLSTM). First, a single Korotkoff sound signal was extracted from the whole Korotkoff sounds signals beat by beat, and each Korotkoff sound signal was converted into a Mel spectrogram. Then, the local feature extraction of Mel spectrogram was processed by using the Attention mechanism and ResNet network, and BiLSTM network was used to deal with the temporal relations between features, and full-connection layer network was applied in reducing the dimension of features. Finally, the classification was completed by SoftMax function. The dataset used in this study was collected from 44 volunteers (24 females, 20 males with an average age of 36 years), and the model performance was verified using 10-fold cross-validation. Results The classification accuracy of the established model for the 5 types of Korotkoff sounds phases was 93.4%, which was higher than that of other models. Conclusion This study proves that the deep learning method can accurately classify Korotkoff sounds phases, which lays a strong technical foundation for the subsequent design of automatic blood pressure measurement methods based on the classification of the Korotkoff sounds phases.
Aiming at the difference between the brain networks of children with attention deficit hyperactivity disorder (ADHD) and normal children in the task-executing state, this paper conducted a comparative study using the network features of the visual function area. Functional magnetic resonance imaging (fMRI) data of 23 children with ADHD [age: (8.27 ± 2.77) years] and 23 normal children [age: (8.70 ± 2.58) years] were obtained by the visual capture paradigm when the subjects were performing the guessing task. First, fMRI data were used to build a visual area brain function network. Then, the visual area brain function network characteristic indicators including degree distribution, average shortest path, network density, aggregation coefficient, intermediary, etc. were obtained and compared with the traditional whole brain network. Finally, support vector machines (SVM) and other classifiers in the machine learning algorithm were used to classify the feature indicators to distinguish ADHD children from normal children. In this study, visual brain function network features were used for classification, with a classification accuracy of up to 96%. Compared with the traditional method of constructing a whole brain network, the accuracy was improved by about 10%. The test results show that the use of visual area brain function network analysis can better distinguish ADHD children from normal children. This method has certain help to distinguish the brain network between ADHD children and normal children, and is helpful for the auxiliary diagnosis of ADHD children.
Polysomnography (PSG) monitoring is an important method for clinical diagnosis of diseases such as insomnia, apnea and so on. In order to solve the problem of time-consuming and energy-consuming sleep stage staging of sleep disorder patients using manual frame-by-frame visual judgment PSG, this study proposed a deep learning algorithm model combining convolutional neural networks (CNN) and bidirectional gate recurrent neural networks (Bi GRU). A dynamic sparse self-attention mechanism was designed to solve the problem that gated recurrent neural networks (GRU) is difficult to obtain accurate vector representation of long-distance information. This study collected 143 overnight PSG data of patients from Shanghai Mental Health Center with sleep disorders, which were combined with 153 overnight PSG data of patients from the open-source dataset, and selected 9 electrophysiological channel signals including 6 electroencephalogram (EEG) signal channels, 2 electrooculogram (EOG) signal channels and a single mandibular electromyogram (EMG) signal channel. These data were used for model training, testing and evaluation. After cross validation, the accuracy was (84.0±2.0)%, and Cohen's kappa value was 0.77±0.50. It showed better performance than the Cohen's kappa value of physician score of 0.75±0.11. The experimental results show that the algorithm model in this paper has a high staging effect in different populations and is widely applicable. It is of great significance to assist clinicians in rapid and large-scale PSG sleep automatic staging.