west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "biomechanic" 96 results
  • Biomechanical study of polymethyl methacrylate bone cement and allogeneic bone for strengthening sheep vertebrae

    ObjectiveTo investigate the feasibility and mechanical properties of polymethyl methacrylate (PMMA) bone cement and allogeneic bone mixture to strengthen sheep vertebrae with osteoporotic compression fracture.MethodsA total of 75 lumbar vertebrae (L1-L5) of adult goats was harvested to prepare the osteoporotic vertebral body model by decalcification. The volume of vertebral body and the weight and bone density before and after decalcification were measured. And the failure strength, failure displacement, and stiffness were tested by using a mechanical tester. Then the vertebral compression fracture models were prepared and divided into 3 groups (n=25). The vertebral bodies were injected with allogeneic bone in group A, PMMA bone cement in group B, and mixture of allogeneic bone and PMMA bone cement in a ratio of 1∶1 in group C. After CT observation of the implant distribution in the vertebral body, the failure strength, failure displacement, and stiffness of the vertebral body were measured again.ResultsThere was no significant difference in weight, bone density, and volume of vertebral bodies before decalcification between groups (P>0.05). After decalcification, there was no significant difference in bone density, decreasing rate, and weight between groups (P>0.05). There were significant differences in vertebral body weight and bone mineral density between pre- and post-decalcification in 3 groups (P<0.05). CT showed that the implants in each group were evenly distributed in the vertebral body with no leakage. Before fracture, the differences in vertebral body failure strength, failure displacement, and stiffness between groups were not significant (P>0.05). After augmentation, the failure displacement of group A was significantly greater than that of groups B and C, and the failure strength and stiffness were less than those of groups B and C, the failure displacement of group C was greater than that of group B, and the failure strength and stiffness were less than those of group B, the differences between groups were significant (P<0.05). Except for the failure strength of group A (P>0.05), the differences in the failure strength, failure displacement, and stiffness before fracture and after augmentation in the other groups were significant (P<0.05).ConclusionThe mixture of allogeneic bone and PMMA bone cement in a ratio of 1∶1 can improve the strength of the vertebral body of sheep osteoporotic compression fractures and restore the initial stiffness of the vertebral body. It has good mechanical properties and can be used as one of the filling materials in percutaneous vertebroplasty.

    Release date:2021-04-27 09:12 Export PDF Favorites Scan
  • The killer turn in the posterior cruciate ligament reconstruction: mechanism and improvement

    ObjectiveTo summarize the research progress of killer turn in posterior cruciate ligament (PCL) reconstruction.MethodsThe literature related to the killer turn in PCL reconstruction in recent years was searched and summarized.ResultsThe recent studies show that the killer turn is considered to be the most critical cause of graft relaxation after PCL reconstruction. In clinic, this effect can be reduced by changing the fixation mode of bone tunnel, changing the orientation of bone tunnel, squeezing screw fixation, retaining the remnant, and grinding the bone at the exit of bone tunnel. But there is still a lack of long-term follow-up.ConclusionThere are still a lot of controversies on the improved strategies of the killer turn. More detailed basic researches focusing on biomechanics to further explore the mechanism of the reconstructed graft abrasion are needed.

    Release date:2020-07-07 07:58 Export PDF Favorites Scan
  • Biomechanical research of anterior cruciate ligament fixation by tibial interfacial screw combined with bone tunnel crossing technology

    ObjectiveTo compare the strength difference between the interfacial screw and the interfacial screw combined with bone tunnel crossing technology to fix the tibial end of ligament during anterior cruciate ligament (ACL) reconstruction through the biomechanical test.MethodsTwenty fresh frozen pig tibia were randomly divided into two groups (n=10) to prepare ACL reconstruction models. The graft tendons in the experimental group were fixed with interfacial screw combined with bone tunnel crossing technology, and the graft tendons in the control group were fixed with interfacial screw. The two groups of specimens were fixed in the high-frequency dynamic mechanics test system M-3000, and the length change (displacement), ultimate load, and stiffness of graft tendons were measured through the reciprocating test and load-failure test.ResultsThe results of reciprocating test showed that the displacement of the experimental group was (3.06±0.58) mm, and that of the control group was (2.82±0.46) mm, and there was no significant difference between the two groups (t=0.641, P=0.529). The load-failure test results showed that the stiffness of the experimental group and the control group were (95.39±13.63) and (91.38±14.28) N/mm, respectively, with no significant difference (t=1.021, P=0.321). The ultimate load of the experimental group was (743.15±173.96) N, which was significantly higher than that of the control group (574.70±74.43) N (t=2.648, P=0.016).ConclusionIn ACL reconstruction, the fixation strength of tibial end with interface screw combined with bone tunnel crossing technology is obviously better than that of interface screw alone.

    Release date:2021-10-28 04:29 Export PDF Favorites Scan
  • Biomechanical effect of anteromedial coronoid facet fracture and lateral collateral ligament complex injury on posteromedial rotational stability of elbow

    Objective To investigate the effect of anteromedial coronoid facet fracture and lateral collateral ligament complex (LCLC) injury on the posteromedial rotational stability of the elbow joint. Methods The double elbows were obtained from 4 fresh adult male cadaveric specimens. Complete elbow joint (group A,n=8), simple LCLC injury (group B,n=4), simple anteromedial coronoid facet fracture (group C,n=4), and LCLC injury combined with anteromedial coronoid facet fracture (group D,n=8). The torque value was calculated according to the load-displacement curve. Results There was no complete dislocation of the elbow during the experiment. The torque values of groups A, B, C, and D were (10.286±0.166), (5.775±0.124), (6.566±0.139), and (3.004±0.063) N·m respectively, showing significant differences between groups (P<0.05). Conclusion Simple LCLC injury, simple anteromedial coronoid facet fracture, and combined both injury will affect the posteromedial rotational stability of the elbow.

    Release date:2017-03-13 01:37 Export PDF Favorites Scan
  • Study on development and biomechanics test of plastic rod-hook plate

    ObjectiveTo develop a new type of internal fixation device which can be used to treat the minor avulsion fracture of the medial malleolus, lateral malleolus, the base of the fifth metatarsal, and the ulnar styloid process, and investigate the reliability and effectiveness of the device through biomechanical test.MethodsEighty human’s bone specimens with complete medial malleolus, lateral malleolus, the base of the fifth metatarsal, and the ulnar styloid process were selected and measured the anatomic indexes (the height, width, and thickness of medial malleolus, lateral malleolus, the base of the fifth metatarsal, and the ulnar styloid process). The CT three-dimensional reconstruction data of 200 healthy adults which including medial malleolus, lateral malleolus, the base of the fifth metatarsal, and the ulnar styloid process was also selected and measured the anatomic indexes by Mimics software. The plastic rod-hook plate was designed according to the measured results and prepared. Forty fresh porcine lower limb specimens were randomly divided into groups A and B (20 in each group), and 8 adult lower limb specimens including 4 left and 4 right were also randomly divided into groups A and B (4 in each group). All specimens were prepared for avulsion fracture of medial malleolus. Then, the fractures were fixed with plastic rod-hook plate in group A and wire anchor in group B. The load and axial torsion test of ankle joint were carried out by universal biomechanical testing machine.ResultsAccording to the anatomical characteristics, a plastic rod-hook plate was designed successfully. The biomechanical test results between animal and human specimens were consistent. There was a linear relationship between load and displacement in the ankle distal load test. The displacement when loaded to the maximum load was significantly lower in group A than in group B (P<0.05). The torsion angle and torque were significantly higher in group A than in group B when the internal fixation failed in the axial torsion test of the ankle joint (P<0.05), and the torsion angle was significantly smaller in group A than in group B when the torque was 1 N·m (P<0.05), and the maximum torque was also significantly higher in group A than in group B (P<0.05). However, there was no significant difference in torsion angle between the two groups in the maximum torque (P>0.05).ConclusionThe biomechanical properties of plastic rod-hook plate is obviously better than wire anchor, and the fixation of avulsion fracture with plastic rod-hook plate is easy to operate, which is expected to be used in the clinical treatment of minor avulsion fractures such as medial malleolus, lateral malleolus, base of the fifth metatarsal, and ulna styloid process.

    Release date:2019-11-21 03:35 Export PDF Favorites Scan
  • Research progress on mechanical performance evaluation of artificial intervertebral disc

    The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.

    Release date:2018-08-23 03:47 Export PDF Favorites Scan
  • Biomechanical study of different approach for lumbar interbody fusion surgeries under vibration load

    The human spine injury and various lumbar spine diseases caused by vibration have attracted extensive attention at home and abroad. To explore the biomechanical characteristics of different approaches for lumbar interbody fusion surgery combined with an interspinous internal fixator, device for intervertebral assisted motion (DIAM), finite element models of anterior lumbar interbody fusion (ALIF), transforaminal lumbar interbody fusion (TLIF) and lateral lumbar interbody fusion (LLIF) are created by simulating clinical operation based on a three-dimensional finite element model of normal human whole lumbar spine. The fusion level is at L4–L5, and the DIAM is implanted between spinous process of L4 and L5. Transient dynamic analysis is conducted on the ALIF, TLIF and LLIF models, respectively, to compute and compare their stress responses to an axial cyclic load. The results show that compared with those in ALIF and TILF models, contact forces between endplate and cage are higher in LLIF model, where the von-Mises stress in endplate and DIAM is lower. This implies that the LLIF have a better biomechanical performance under vibration. After bony fusion between vertebrae, the endplate and DIAM stresses for all the three surgical models are decreased. It is expected that this study can provide references for selection of surgical approaches in the fusion surgery and vibration protection for the postsurgical lumbar spine.

    Release date:2021-12-24 04:01 Export PDF Favorites Scan
  • Three-dimensional finite element analysis of Swanson prosthesis-arthroplasty of the first metatarsophalangeal joint combined with osteotomy and bone grafting of the first metatarsal bone for hallux valgus

    Objective To analyze the biomechanical changes of hallux valus after Swanson prosthesis-arthroplasty of the 1st metatarsophalangeal joint combined with osteotomy and bone grafting of the 1st metatarsal bone by three-dimensional finite element analysis, so as to provide data basis for studying the changes of foot morphology and physiological function after hallux valus correction surgery. Methods A 65-year-old female patient with severe hallux valus admitted in January 2013 was selected as the research object. The CT data of the right foot was obtained, and the three-dimensional finite element models before and after Swanson prosthesis-arthroplasty of the 1st metatarsophalangeal joint combined with osteotomy and bone grafting of the 1st metatarsal bone were established by Mimics10.01, Geomagic Studio, and ANSYS12.0 software. ANSYS 12.0 software was used for nonlinear static stress analysis, and the hallux valgus angle (HVA), the intermetatarsal angle (IMA), and the von Mises stress distributions of the forefoot plantar surface and the 1st to 5th metatarsal bones were observed before and after operation. ResultsThe HVA and IMA were 56.3° and 16.3° before operation and 9.2° and 9.8° after operation, respectively. Before operation, the stress on the forefoot was the largest in the 4th metatarsal head zone and the smallest in the 1st metatarsal head zone; the stress on the medial side of the forefoot was significantly smaller than that on the lateral side, and the center of forefoot pressure was located on the lateral side. After operation, the stress on the forefoot was the largest in the 1st metatarsal head zone and the smallest in the 5th metatarsal head zone; the stress on the lateral side of the forefoot was significantly smaller than that on the medial side, and the center of forefoot pressure was located on the medial side. Before operation, the stress of the 5th metatarsal bone was the largest, and the 1st metatarsal bone was the smallest. After operation, the stress of the 1st metatarsal bone was the largest, and the 4th metatarsal bone was the smallest. Conclusion Swanson prosthesis-arthroplasty of the 1st metatarsophalangeal joint combined with osteotomy and bone grafting of the 1st metatarsal bone can effectively correct hallux valgus and make HVA, IMA, and plantar pressure distribution close to normal. However, postoperative stresses of the 1st to 5th metatarsal bones elevate, which may lead to associated complications.

    Release date:2022-09-30 09:59 Export PDF Favorites Scan
  • Present Status of Reliability Research on the Effects of Medical Instrument at the Instrument-tissue Interface

    The interaction between medical instrument and target tissue during the surgery occurs in instrument-tissue interface. The reliability research on the interface is directly related to the safety and effectiveness of medical instrument in the clinical application. This paper illustrates the necessity of reliability research on instrument-tissue interface. Two main contents are synthetically reviewed the present paper: (1) reliability research on medical instruments; (2) biological tissue properties and its mechanical response.

    Release date: Export PDF Favorites Scan
  • Visualization of global publications on meniscus extrusion: research status and trends

    Objective To examine the research status and predict trends in ME research findings from 1997-2023 on a global scale. Methods Web of Science Core Collection database was searched for original articles on ME published between 1997 and 2023, and then analyzed using CiteSpace, VOSviewer and the Online Analysis Platform of Literature Metrology to map scientific knowledge. Results A total of 748 articles were eventually included. The number of ME publications increased year by year, with the USA being the most productive country. Osteoarthritis, MRI, medial meniscus posterior root repair, biomechanical evaluation, lateral meniscus allograft transplantation, radiographic joint space narrowing are the high frequency keywords in co-occurrence cluster analysis and cocited reference cluster analysis. Medial meniscus posterior root tear and lateral meniscus allograft transplantation are current and evolving research hotspots in citation burst detection analysis. Conclusions The understanding of ME has been improved significantly during the past decades. Current research focuses on optimizing surgical repair methods and obtaining long-term follow-up outcomes for medial meniscal posterior root repair and developing methods to reduce ME after lateral meniscal allograft, as well as they are the highlights of future research on ME.

    Release date:2024-10-25 01:48 Export PDF Favorites Scan
10 pages Previous 1 2 3 ... 10 Next

Format

Content