ObjectiveTo evaluate the effect of a novel micro-arc oxidation (MAO) coated magnesium-zinc-calcium (Mg-Zn-Ca) alloy scaffold/autologous bone particles to repair critical size bone defect (CSD) in rabbit and explore the novel scaffold in vivo corrosion resistance and biocompatibility.MethodsSeventy-two New Zealand white rabbits were randomly divided into 3 groups (n=24), group A was uncoated Mg-Zn-Ca alloy scaffold group, group B was 10 μm MAO coated Mg-Zn-Ca alloy scaffold group, and group C was control group with only autologous bone graft. The animals were operated to obtain bilateral ulnar CSD (15 mm in length) models. The bone fragment was removed and minced into small particles and were filled into the scaffolds of groups A and B. Then, the scaffolds or autologous bone particles were replanted into the defects. The animals were sacrificed at 2, 4, 8, and 12 weeks after surgery (6 rabbits each group). The local subcutaneous pneumatosis was observed and recorded. The ulna defect healing was evaluated by X-ray image and Van Gieson staining. The X-ray images were assessed and scored by Lane-Sandhu criteria. The percentage of the lost volume of the scaffold (ΔV) and corrosion rate (CR) were calculated by the Micro-CT. The Mg2+ and Ca2+ concentrations were monitored during experiment and the rabbit liver, brain, kidney, and spleen were obtained to process HE staining at 12 weeks after surgery.ResultsThe local subcutaneous pneumatosis in group B was less than that in group A at 2, 4, and 8 weeks after surgery, showing significant differences between 2 groups at 2 and 4 weeks after surgery (P<0.05); and the local subcutaneous pneumatosis was significantly higher in group B than that in group A at 12 weeks after surgery (P<0.05). The X-ray result showed that the score of group C was significantly higher than those of groups A and B at 4 and 8 weeks after surgery (P<0.05), and the score of group B was significantly higher than that of group A at 8 weeks (P<0.05). At 12 weeks after surgery, the scores of groups B and C were significantly higher than that of group A (P<0.05). Meanwhile, the renew bone moulding of group B was better than that in group A at 12 weeks after surgery. Micro-CT showed that ΔV and CR in group B were significantly lower than those in group A (P<0.05). Van Gieson staining showed that group B had better biocompatibility and osteanagenesis than group A. The Mg2+ and Ca2+ concentrations in serum showed no significant difference between groups during experiments (P>0.05). And there was no obvious pathological changes in the liver, brain, kidney, and spleen of the 3 groups with HE staining at 12 weeks.ConclusionThe MAO coated Mg-Zn-Ca alloy scaffold/autologous bone particles could be used to repair CSD effectively. At the same time, 10 μm MAO coating can effectively improve the osteanagenesis, corrosion resistance, and biocompatibility of Mg-Zn-Ca alloy scaffold.
ObjectiveTo investigate the effectiveness of flap combined with induced membrane technique in treatment of post-traumatic tibial osteomyelitis with soft tissue defect. Methods A clinical data of 33 patients with post-traumatic tibial osteomyelitis with soft tissue defect who met the selection criteria between August 2015 and October 2018 was retrospectively analyzed. There were 21 males and 12 females. The age ranged from 19 to 70 years, with an average of 39 years. The osteomyelitis located in the upper 1/3 of tibia in 8 cases, in the middle 1/3 of tibia in 14 cases, and in the lower 1/3 of tibia in 11 cases. According to Cierny-Mader classification standard, 19 cases of osteomyelitis were type Ⅲ and 14 cases were type Ⅳ. The duration of osteomyelitis ranged from 2 months to 20 years (median, 3 months). In the first-stage operation, after radical debridement, the length of bone defect was 1.5-12.5 cm (mean, 5.0 cm) and the size of soft tissue defects ranged from 5 cm×4 cm to 15 cm×12 cm. Bone cement containing antibiotics was implanted into the bone defect and the personalized flap was used to repair the wound. After the wound healed at 6-8 weeks and the infection was controlled, bone grafting was performed to repair bone defects in the second-stage operation. Results The flaps survived completely after the first-stage operation in 29 cases. Partial necrosis of the flap occurred in 4 cases and healed after surgical dressing change. All the incisions healed by first intention after the second-stage operation. All patients were followed up 24-32 months (mean, 28 months). All the bone grafts healed after operation, and the radiographic healing time was 3-9 months (mean, 5 months). The clinical healing time was 4-14 months (mean, 8 months). There was no recurrence of osteomyelitis during follow-up. At last follow-up, according to Johner-Wruhs evaluation criteria, the limb function was excellent in 27 cases, good in 4 cases, and fair in 2 cases, with an excellent and good rate of 93.9%. Conclusion For the post-traumatic tibial osteomyelitis with soft tissue defect, the flap combined with induced membrane technique is a reliable and effective method and can effectively restore the function of lower limbs with satisfactory effectiveness.
Icariin(ICA) is one of the main active ingredients in the Berberidaceae family Epimedium. It makes a variety of biological activities, such as promoting bone formation, antibacterial and anti-inflammatory, and regulating immunity. Periodontitis is a chronic inflammatory disease that is present in the soft and hard tissues of the periodontium. The ultimate goals of its treatment are the reconstruction of periodontal tissues and bone defect repairing. At present, conventional treatment of periodontitis fails to achieve the ideal periodontal tissue regeneration. In recent years, the rapid development of tissue engineering technology has brought new ideas for the treatment of periodontal disease and bone defect repairing. Because of its anti-inflammatory and osteogenic effects, ICA has great potential for the treatments of periodontitis and bone defect repairing. This paper summarizes the effect and the molecular mechanism of ICA in the treatment of periodontitis and bone defect repairing, and discusses its application prospect as a drug for periodontal adjuvant therapy. This paper aims to provide a theoretical basis for the research and application of ICA in periodontitis treatment and bone defect repairing.
ObjectiveTo compare the effectiveness of calcium phosphate cement (CPC) loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) combined with CPC loaded with antibiotic versus CPC loaded with antibiotic alone in one stage for chronic osteomyelitis with bone defect.MethodsA single-blind prospective randomized controlled clinical trial was conducted. Between April 2018 and April 2019, 80 patients of chronic osteomyelitis with bone defect in accordance with the random number table were randomly divided into two groups, 40 in the trial group (CPC loaded with rhBMP-2 combined with CPC loaded with antibiotic) and 40 in the control group (CPC loaded with antibiotic). There was no significant difference in gender, age, disease duration, lesion, and preoperative white blood cells (WBC) count, platelet count, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) between the two groups (P>0.05). All patients were implanted the corresponding CPC and external fixator after lesion clearance in the two groups. The postoperative WBC count, platelet count, ESR, CRP, hospital stay, cure rate of osteomyelitis, repaired bone defect volume, the time of external fixator removal, and the time of full weight-bearing of the affected limb were compared between the two groups.ResultsAll patients were followed up 12-24 months, with an average of 18.4 months. There was no significant difference in WBC count, platelet count, ESR, and CRP between the two groups at 4 weeks after operation (P>0.05). There were significant differences in WBC count, platelet count, and CRP in the two groups between 1 week before operation and 4 weeks after operation (P<0.05). And the ESR showed no significant difference between pre- and post-operation in the two groups (P>0.05). In the trial group, the anaphylactic exudate occurred in 1 patient with tibial osteomyelitis and the incision healed after oral administration of loratadine. The incisions of other patients healed by first intention in the two groups. One case of distal tibial osteomyelitis recurred in each group, and 1 case of humeral osteomyelitis recurred in the control group. The cure rates of osteomyelitis were 97.5% (39/40) in the trial group and 95% (38/40) in the control group, showing no significant difference between the two groups (χ2=0.000, P=1.000). There was no significant difference in the repaired bone defect volume and hospital stay between the two groups (P>0.05). X-ray film and CT showed that the bone defects were repaired in the two groups. The time of external fixator removal and the time of full weight-bearing of the affected limb were significantly shorter in the trial group than in the control group (P<0.05).ConclusionApplication of CPC loaded with rhBMP-2 and antibiotic in one stage is effective for the chronic osteomyelitis with bone defect, which can accelerate the bone regeneration in situ to repair bone defect, reduce the trauma, shorten the course of treatment, and obtain good function of the affected limb.
Objective To investigate the effectiveness of tissue flap grafting and sequential bone lengthening for repairing severe soft tissue and bone defects of the lower extremity after burn injury. Methods Between January 2010 and December 2015, 11 cases of large segmental bone and soft tissue defects in the leg were treated. There were 10 males and 1 female, with a mean age of 28 years (range, 19-37 years). The causes included traffic accident in 8 cases, high voltage electric burn in 2 cases, CO poisoning burn in 1 case. The time from injury to admission was 3-14 days (mean, 6.5 days). The bone defect length was 8-18 cm (mean,14 cm); the skin soft tissue defect ranged from 13 cm × 8 cm to 25 cm × 19 cm. After complete removal of necrotic tissue and lesions of the femur or the tibia, the tissue flaps were used to repair soft tissue defect of the lower extremity in one-stage operation; bone defect was treated by Orthofix single side external fixation or Ilizarov ring external fixation in two-stage operation. Results Eleven flaps survived completely, primary healing of incision was obtained in the others except for 1 patient who had necrotic bone infection, which was cured after removing necrosed femoral bone and filling with antibiotic bone cement spacer. During bone lengthening, pin tract infection occurred in 1 patient, and infection was controlled after dressing change. Bone lengthening ranged from 8 to 18 cm, with an average of 14 cm. After prolonged extension, the external fixator was retained for 4-12 months (mean, 6.5 months). All bone defects were repaired with bone healing time of 12-22 months (mean, 17 months). All patients were followed up 8-24 months (mean, 15 months). No vascular and neurological complication occurred during operation; no osteomyelitis or re-fracture occurred after operation, and the recovery of the lower extremity function was good. Conclusion Tissue flap grafting combined with bone lengthening is an effective method to repair severe bone and soft tissue defects of lower extremity.
【Abstract】 Objective To investigate the anti-infection and bone repair effects of cationic l i posome-encapsulatedvancomycin combined with the nano-hydroxyapatite/chitosan/konjac glucomannan (n-HA/CS/KGM) composite scaffold invivo. Methods Fifty-one 6-month-old New Zealand white rabbits, weighing 1.5-3.0 kg, were selected to prepare chronicinfectious tibia bone defect model by using Staphylococcus aureus. After 4 weeks, 48 survival rabbits were randomly divided into 4 groups (n=12). After debridement, defect was treated with nothing in group A, with n-HA/CS/KGM composite scaffold in group B, with vancomycin and n-HA/CS/KGM composite scaffold in group C, and with cationic l i posome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold in group D. After 8 weeks of treatment, general observation, X-ray, HE staining, the bacterial culture, and the measurement of the longest diameter of bone defect were done. Results At 4 weeks after modeling, 48 rabbits were diagnosed as having osteomyelitis, including periosteal new bone formation, destruction of bone, and soft tissue swell ing. The Norden score was 3.83 ± 0.52. At 8 weeks after treatment, sinus healed in groups C and D, but sinus was observed in groups A and B; the gross bone pathologieal scores of group D were significantly better than those of groups A and B (P lt; 0.05). Bone defects were repaired completely in group D, the results of the longest diameter of bone defects in group D was significantly better than those in the other 3 groups (P lt; 0.05). New bone formation was observed in groups C and D, but periosteal reactionand marrow low-density shadow were observed in groups A and B; Norden score in group D was significantly better than those in groups A, B, and C (P lt; 0.05). HE staining showed that there were a large number of trabecular bone formation and fibrosis, with no obvious signs of infection in groups C and D, but neutrophil accumulation was observed in groups A and B; Smeltzer scores in groups C and D were significantly better than those in groups A and B (P lt; 0.05). Bacteriological results showed higher negative rate in groups C and D than in groups A and B (P lt; 0.05). Conclusion Cationic l iposome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold can be a good treatment for infectious bone defects in rabbits, providing a new strategy for the therapy of bone defects in chronic infection.
ObjectiveTo investigate the effectiveness of tibial periosteal flap pedicled with intermuscular branch of posterior tibial vessels combined with autologous bone graft in the treatment of tibial bone defects. MethodsBetween January 2007 and December 2013, 19 cases of traumatic tibia bone and soft tissue defects were treated. There were 14 males and 5 females, aged from 18 to 49 years (mean, 28 years). The tibial fracture site located at the middle tibia in 6 cases and at the distal tibia in 13 cases. According to Gustilo type, 4 cases were rated as type Ⅲ A, 14 cases as type Ⅲ B, and 1 case as type Ⅲ C (injury of anterior tibial artery). The length of bone defect ranged from 4.3 to 8.5 cm (mean, 6.3 cm). The soft tissue defects ranged from 8 cm×5 cm to 17 cm×9 cm. The time from injury to operation was 3 to 8 hours (mean, 4 hours). One-stage operation included debridement, external fixation, and vacuum sealing drainage. After formation of granulation tissue, the fresh wound was repaired with sural neurovascular flap or posterior tibial artery perforator flap. The flap size ranged from 10 cm×6 cm to 19 cm×11 cm. In two-stage operation, tibial periosteal flap pedicled with intermuscular branch of posterior tibial vessels combined with autologous bone graft was used to repair tibial defect. The periosteal flap ranged from 6.5 cm×4.0 cm to 9.0 cm×5.0 cm; bone graft ranged from 4.5 to 9.0 cm in length. External fixation was changed to internal fixation. ResultsAll flaps survived with soft texture, and no ulcer and infection occurred. All incisions healed by the first intention. All patients were followed up 18-40 months (mean, 22.5 months). All graft bone healed, with the healing time from 3 to 9 months (mean, 6.5 months). No complication of implant loosening or fracture was observed. No pain and abnormal activity in the affected leg occurred. All patients resumed weight-bearing and walking function. The length of the limb was recovered and difference value was 0.5-1.5 cm between normal and affected sides. The function of the knee and ankle joint was good without infection, malunion, and equinus. According to the Johner standard at last follow-up, the results were excellent in 15 cases, good in 3 cases, and fair in 1 case, with an excellent and good rate of 94.7%. ConclusionTibial periosteal flap pedicled with intermuscular branch of posterior tibial vessels combined with autologous bone graft is an effective method to treat bone defect of the tibia.
Objective To explore the surgical technique and effectiveness of autologous femoral head bone graft in total hip arthroplasty (THA) for Crowe type Ⅲ developmental dysplasia of the hip (DDH) with acetabular bone defect. Methods Between July 2012 and September 2015, 12 cases (12 hips) of Crowe type Ⅲ DDH with acetabular bone defect were included. Of the 12 patients, 2 were male and 10 were female, with an average age of 54.3 years (range, 37-75 years). The Harris score before operation was 41.08±7.90. The preoperative leg length discrepancy was 0.53-4.28 cm, with an average of 2.47 cm. Autologous femoral head bone graft and cancellous screw fixation were used in all cases to reconstruct acetabula in THA. Four cases were performed with subtrochanteric shortening osteotomy at the same time. Results All incisions healed by first intention. Twelve cases were followed up 1 year and 10 months to 5 years, with an average of 3.0 years. X-ray films showed that bone healing was observed in all cases at 6 months to 1 year after operation. There was no bone graft osteolysis, absorption, bone graft collapse, and acetabular prosthesis loosening. At last follow-up, the Harris score was 89.50±2.78, showing significant difference when compared with preoperative value (t=–25.743, P=0.003). The length discrepancy was 0-1.81 cm at last follow-up with an average of 0.76 cm. Conclusion Autologous femoral head bone graft is effective for Crowe type Ⅲ DDH with acetabular bone defect, which has advantages of restoring pelvic bone stock, obtaining satisfied prosthetic stability and mid-term effectiveness.
Objective To investigate the expression levels and significance of vascular endothel ial growth factor (VEGF) and microvessel density (MVD) in rabbit radius defects repaired with allogeneic and autogenic bone. Methods Forty adult New Zealand rabbits were chosen, and 10 mm bone defect model was created in the bilateral radii of 28 experimental rabbits. The other 12 rabbits provided allogeneic bone under the standard of American Association of Tissue Bank. In the left side, allogeneic bone were used to repair bone defect (experimental group), equal capacity autogenous il iac bone was used in the right side (control group). Animals were sacrificed at 2, 4, 8, and 12 weeks postoperatively. Immunohistochemical method was used to determine the expression of VEGF, CD34 protein and MVD counting. Bone histomorphometric parameters, including percent trabecular area (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp) were measured by von Kossa staining undecalcified sl ices. The relation was analyzed between VEGF and MVD, histomorphometric parameters. Results The positive signals of VEGF protein were detected in cytoplasm of vascular endothel ial cells, chondrocytes, osteoblasts, fibroblasts and osteoclasts. At 2 weeks, there was no significant difference in VEGF protein expression between experimental group and control group (P gt; 0.05); at 4 and 8 weeks, the expression of VEGF in control group was significantly higher than that in experimental group (P lt; 0.05); and at 12 weeks, there was no significant difference between two groups (P gt; 0.05). There was a positive correlation (P lt; 0.01) between VEGF expression and MVD value in two groups at 2, 4, 8, and 12 weeks postoperatively. There was no significant difference in bone histomorphometric parameters (BV/TV, Tb.Th, Tb.N, Tb.Sp) between two groups at 12 weeks postoperatively (P gt; 0.05), but there was a positive correlation between VEGF expression and parameters of BV/TV, Tb.Th, and Tb.N (P lt; 0.01); and a negative correlation between VEGF and Tb.Sp (P lt; 0.01). Conclusion VEGF can express diversity at different time and positions, and the different expressions indicated various biology significances in the process of the bone heal ing. It can coordinate growth of cartilage and bone and profit vascular reconstruction of allogeneic bone. VEGF may participate in promoting osteogenesis in the course of allogeneic bone transplantation.
Objective To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects. Methods Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods. Results The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects. For example, calcium phosphate ceramics scaffolds, hydrogel scaffolds, three-dimensional (3D)-printed biological scaffolds, metal scaffolds, as well as polymer material scaffolds and bone organoids, have all demonstrated good bone repair-promoting effects. However, in the pathological bone microenvironment of osteoporosis, the function of single-material scaffolds to promote bone regeneration is insufficient. Therefore, the design of bioactive scaffolds must consider multiple factors, including material biocompatibility, mechanical properties, bioactivity, bone conductivity, and osteogenic induction. Furthermore, physical and chemical surface modifications, along with advanced biotechnological approaches, can help to improve the osteogenic microenvironment and promote the differentiation of bone cells. ConclusionWith advancements in technology, the synergistic application of 3D bioprinting, bone organoids technologies, and advanced biotechnologies holds promise for providing more efficient bioactive scaffolds for the repair and regeneration of osteoporotic bone defects.